

PyNeuraLogic

[image: _images/neuralogic.svg]
 [https://badge.fury.io/py/neuralogic][image: _images/neuralogic1.svg]
 [https://badge.fury.io/py/neuralogic][image: _images/badge.svg]
 [https://github.com/LukasZahradnik/PyNeuraLogic/actions/workflows/tests.yml][image: _images/f03cf1d1f66d491616530b99404295791f44d1aa.svg]
 [https://pyneuralogic.readthedocs.io/en/latest/?badge=latest]PyNeuraLogic lets you use Python to create Differentiable Logic Programs

Logic programming is a declarative coding paradigm in which you declare your logical variables and relations between them. These can be further composed into so-called rules that drive the computation. Such a rule set then forms a logic program, and its execution is equivalent to performing logic inference with the rules.

PyNeuralogic, through its NeuraLogic [https://github.com/GustikS/NeuraLogic] backend, then makes this inference process
differentiable which, in turn, makes it equivalent to forward propagation in deep learning. This lets you learn numeric parameters that can be associated with the rules, just like you learn weights in neural networks.

What is this good for?

Many things! For instance - ever heard of Graph Neural Networks [https://distill.pub/2021/gnn-intro/] (GNNs)? Well, a graph
happens to be a special case of a logical relation - a binary one to be more exact. Now, at the heart of any GNN model there is
a so-called propagation rule for passing ‘messages’ between the neighboring nodes. Particularly, the representation (‘message’)
of a node X is calculated by aggregating the representations of adjacent nodes Y, i.e. those with an edge
between X and Y.

Or, a bit more ‘formally’:

Relation.node2(Var.X) <= (Relation.node1(Var.Y), Relation.edge(Var.Y, Var.X))

…and that’s the actual code! Now for a classic learnable GNN layer, you’ll want to add some numeric parameters, such as

Relation.node2(Var.X)[5,10] <= (Relation.node1(Var.Y)[10,20], Relation.edge(Var.Y, Var.X))

to project your [1,20] input node embeddings through a learnable [10,20] layer before the aggregation,
and subsequently a [5,10] layer after the aggregation. The particular aggregation and activation functions, as
well as other details, can naturally be specified further [https://pyneuralogic.readthedocs.io/en/latest/language.html],
but you can as well leave it default like we did here with your first, fully functional GNN layer!

How is it different from other GNN frameworks?

Naturally, PyNeuralogic is by no means limited to GNN models, as the expressiveness of relational logic goes much further beyond graphs. So nothing stops you from playing directly with:

	multiple relations and object types

	hypergraphs, nested graphs, relational databases

	alternative propagation schemes

	direct sub-structure (pattern) matching

	inclusion of logical background knowledge

	and more…

In PyNeuraLogic [https://dspace.cvut.cz/bitstream/handle/10467/97065/F3-DP-2021-Zahradnik-Lukas-Extending-Graph-Neural-Networks-with-Relational-Logic.pdf?sequence=-1&isAllowed=y],
all these ideas take the same form of simple small logic programs. These are commonly highly transparent and easy to understand, thanks to their declarative nature. Consequently,
there is no need to design a new blackbox class name for each small modification of the GNN rule - you code directly at the level of the logical principles here!

The backend engine then creates the underlying differentiable computation (inference) graphs in a fully automated and dynamic fashion, hence you don’t have to care about aligning everything into some (static) tensor operations.
This gives you considerably more expressiveness, and, perhaps surprisingly, sometimes even performance [https://arxiv.org/abs/2007.06286].

We hope you’ll find the framework useful in designing your own deep relational learning ideas beyond the GNNs!
Please let us know if you need some guidance or would like to cooperate!

Supported backends

Models defined in PyNeuraLogic can be built for and evaluated in different backends. Currently, you can pick and use
the following backends, which, except for the Java backend, have to be additionally installed:

	Java

	PyTorch [https://github.com/pytorch/pytorch]

	DyNet [https://github.com/clab/dynet]

Examples

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb] Molecular GNNs [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb] Simple XOR example [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb] Recursive XOR Generalization [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb] Visualization [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb] Pattern Matching [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb] Distinguishing k-regular graphs [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb] Distinguishing non-regular graphs [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb]

Papers

	Beyond Graph Neural Networks with Lifted Relational Neural Networks [https://arxiv.org/abs/2007.06286] Machine Learning Journal, 2021

	Lifted Relational Neural Networks [https://arxiv.org/abs/1508.05128] Journal of Artificial Intelligence Research, 2018

	Lossless compression of structured convolutional models via lifting [https://arxiv.org/abs/2007.06567] ICLR, 2021

Installation

PyNeuraLogic can be easily installed from PyPI repository via pip install command.

Tip

pip install neuralogic

Requirements

The PyNeuraLogic library requires Python >= 3.7 and Java >= 1.8 to be installed.

Additionally, if you plan to use one of the other supported backends, you have to install it manually.

In case you want to use visualization provided in the library, it is required to have Graphviz [https://graphviz.org/download/] installed.

🚀 Quick Start

The PyNeuraLogic library serves for learning on structured data. This quick start guide will showcase one of its uses on
graph structures. Nevertheless, the library is directly applicable to more complex structures, such as relational databases.

Tip

Check out one of the runnable 🔬 Examples in Google Colab!

Graph Representation

Graphs are structures describing entities (vertices) and relations (edges) between them.
In this guide, we will look into how to encode graphs as inputs in different formats and how to learn on graphs.

Tensor Representation

In PyNeuraLogic, you can encode input graphs in various formats depending on your preferences. One such format is a tensor format that you might
already know from other GNN-focused frameworks and libraries. The input graph is
represented in a graph connectivity format, i.e., tensor of shape [2, num_of_edges]. The features are encoded
via tensor of shape [num_of_nodes, num_of_features].

[image: Simple graph]

Let’s consider a simple undirected graph shown above. We can simply encode the structure of the graph (edges) via the
edge_index property and nodes’ features via the x property of class Data, which encapsulates graphs’ data. We can also assign a label to each node via
the y property.
The TensorDataset instance then holds a list of such graphs tensor representations
(Data instances) and can be fed into models

from neuralogic.dataset import Data, TensorDataset

data = Data(
 edge_index=[
 [0, 1, 1, 2, 2, 0],
 [1, 0, 2, 1, 0, 2],
],
 x=[[0], [1], [-1]],
 y=[[1], [0], [1]],
 y_mask=[0, 1, 2],
)

dataset = TensorDataset(data=[data])

Logic Representation

The tensor representation works well for elementary use cases, but it can be quite limiting for more complex inputs.
Not everything can be easily aligned and fitted into a few tensors,
and working with tensors can get quickly cumbersome. That’s where the logic representation comes in with its high expressiveness.

The logic format is based on relational logic constructs to encode the input data, such as graphs. Those constructs are
mainly so-called facts, which are represented in PyNeuraLogic as Relation.predicate_name(...terms)[value].

The Dataset class contains a set of fact lists representing input graphs. The encoding of the previously shown simple graph can look like the following:

from neuralogic.core import Relation
from neuralogic.dataset import Dataset

dataset = Dataset()

dataset.add_example([
 Relation.edge(0, 1), Relation.edge(1, 2), Relation.edge(2, 0),
 Relation.edge(1, 0), Relation.edge(2, 1), Relation.edge(0, 2),

 Relation.node_feature(0)[0],
 Relation.node_feature(1)[1],
 Relation.node_feature(2)[-1],
])

As you can see, this encoding can be pretty lengthy, but at the same time, it gives us multiple benefits over the tensor
representation. For example, nothing stops you from adding edge features, such as Relation.edge(0, 1)[1.0],
or even introducing hypergraphs, such as Relation.edge(0, 1, 2) (read more about Hypergraph Neural Networks).

Note

We used the edge as the predicate name (Relation.edge) to represent the graph edges and the feature (Relation.node_feature) to represent nodes’ features. This naming is arbitrary -
edges and any other input data can have any predicate name. In this documentation, we will stick to edge predicate name for
representing edges and feature predicate name for representing features.

To assign labels, we use queries. Labels can be assigned to basically anything - nodes, graphs, sub-graphs, etc.
In this example, we will label nodes, just like in the case of tensor format representation.

dataset.add_queries([
 Relation.predict(0)[1],
 Relation.predict(1)[0],
 Relation.predict(2)[1],
])

Note

The name Relation.predict refers to the output layer of our model, which we will define in the next section.

Model Definition

Models in PyNeuraLogic are not just particular computational graphs, as common in classic deep learning, but can be viewed more generally as templates for (differentiable) computation.
The template structure is encoded in the instance of the Template class via relational rules or, for convenience, pre-defined modules (which are also expanded into said rules, check out the 🦓 Module Zoo for a list of modules).

from neuralogic.core import Template, Settings
from neuralogic.nn.module import GCNConv

template = Template()
template.add_module(
 GCNConv(in_channels=1, out_channels=5, output_name="h0", feature_name="node_feature", edge_name="edge")
)
template.add_module(
 GCNConv(in_channels=5, out_channels=1, output_name="predict", feature_name="h0", edge_name="edge")
)

Here we defined two GCNConv layers via pre-defined modules.
We further discuss template definition via the rule format, which forms the core advantage of this framework, in the section of the documentation.

Evaluating Model

Now when we have our template defined, we have to get (build) the model from the template to be able to run training and inference on it.
We do that by calling the build method.

from neuralogic.core import Settings, Optimizer

settings = Settings(learning_rate=0.01, optimizer=Optimizer.SGD, epochs=100)
model = template.build(Settings())

The input dataset that we are trying to evaluate/train has to be also built. When we have the built dataset and model,
performing the forward and backward propagation is straightforward.

built_dataset = model.build_dataset(dataset)

model.train() # or model.test() to change the mode
output = model(built_dataset)

Evaluators

For faster prototyping, we have prepared evaluators which encapsulate helpers, such as training loop and
evaluation. Evaluators can then be customized via various settings wrapped in the Settings class.

from neuralogic.nn import get_evaluator
from neuralogic.core import Settings, Optimizer

settings = Settings(learning_rate=0.01, optimizer=Optimizer.SGD, epochs=100)
evaluator = get_evaluator(template, settings)

built_dataset = evaluator.build_dataset(dataset)
evaluator.train(built_dataset, generator=False)

PyNeuraLogic Language

The main feature of the PyNeuraLogic library is its custom declarative language
(based on NeuraLogic [https://github.com/GustikS/NeuraLogic]) for describing the structure of the learning problems, data and models.
In PyNeuraLogic, the language is fully embedded in Python, enabling users to utilize Python’s convenient modules and features.

The idea of using a custom language (following the logic programming paradigm) instead of the predefined modules, as common in popular
frameworks, is to achieve higher expressiveness, reduce the complexity of writing novel model architectures, and
reveal the underlying relational principles of the models.

This section introduces users to the language’s basic syntax, which is essential for understanding concepts presented
in other sections and using the library to its full potential.

Relations

Relations are fundamental building blocks of the PyNeuraLogic language. Each instance of a relation consists of four parts - predicate name,
an arbitrary number of terms, optional weight (or value), and optional modifier. Predicate name, together
with the “arity” (number of terms) the relation forms its unique signature.

[image: Relation structure]

Relations are created via object Relation that can be imported from neuralogic.core.

Tip

You can also create relations via R object, which is a shortcut of Relation.

Predicate name

Predicates serve as a descriptive name for the relations. Predicate names are case-sensitive and have to
start with a lower-case letter. Usually, relations with specific predicate names are created directly via Relation object
(e.g., Relation.my_rel creates a relation with the predicate name my_rel).
For convenience, we can also use the Relation.get method (e.g., Relation.get("my_rel")),
which can be useful for generating relations.

from neuralogic.core import Relation

Relation.my_rel # Relation with a predicate name "my_rel"

for i in range(5):
 # Relations with predicate names "my_rel_0", ..., "my_rel_4"
 Relation.get(f"my_rel_{i}")

Note

Prepending the predicate name with an underscore (_) will make the relation “hidden” (e.g., Relation.hidden.my_rel is equal to Relation._my_rel). You can read more about modifiers, such as “hidden”, in the Modifiers section.

Terms

Terms are an optional list of constants and/or logic variables.

	Constants are either numeric values (floats, integers) or string values with a lower-cased first letter. We can also define a constant via neuralogic.core.Term, which converts the provided value into a valid constant (string) for us.

from neuralogic.core import Term, Relation

Relation.my_rel # A relation with NO terms, also called a "proposition" in logic
Relation.my_rel(1.0) # A relation with one constant term 1.0
Relation.my_rel(Term.my_term, "string_term") # A relation with two constant terms "my_term" and "string_term"
Relation.my_rel(1.0, Term.My_Term) # A relation with two constant terms 1.0 and "my_term"

	Variables are capitalized string values. We can, similarly to constants, utilize helper neuralogic.core.Var, which converts the provided value into a valid variable (string) for us.

from neuralogic.core import Var, Relation

Relation.my_rel(Var.X) # A relation with one variable "X"
Relation.my_rel(Var.x, "Y") # A relation with two variable terms "X" and "Y"

Relations with logical variables express general patterns, which is essential for encoding deep relational models, such as GNNs.

Note

We call relation “ground” if all of its terms are constants (no variables). These are essentially specific (logical) statements, or facts, commonly used to encode the data and particular observations.

Weights

On top of classic relational logic programming, in PyNeuraLogic, the relations can be additionally associated with weights.
A relation’s weight is optional and servers as a learnable parameter. The weight itself can be defined in the following ways:

	Scalar value defining a learnable scalar parameter initialized to a specific value.

Relation.my_rel[0.5] # Scalar weight initialized to 0.5

	Vector value defining a learnable vector parameter initialized to a specific value.

Relation.my_rel[[1.0, 0.0, 1.0]] # Vector weight initialized to [1.0, 0.0, 1.0]

	Matrix value defining a learnable matrix parameter initialized to a specific value.

Relation.my_rel[[[1, 0], [0, 1]]] # Matrix weight initialized to [[1, 0], [0, 1]]

Tip

Matrix and vector values can also be in the form of NumPy [https://numpy.org/] arrays.

Instead of defining particular values for the parameters, we can also choose to specify merely the dimensionality of it instead. Here, each element of the parameter represents the size of the corresponding dimension. The initialization of the values in this case is sampled from a distribution determined by the Settings object.

Relation.my_rel[2,] # Specification of a randomly initialized weight vector of length 2
Relation.my_rel[3, 3] # Specification of a randomly initialized 3x3 weight matrix

Warning

Notice the difference between Relation.my_rel[2] and Relation.my_rel[2,] where the first one represents a particular scalar weight with value “2”, while the latter represents a randomly initialized weight vector of length 2.

Named Weights

Weight sharing is at the heart of modelling with PyNeuraLogic, where all the (ground) instances of a relation will share its associated parameters. However, you can also choose to share a single weight across multiple relations. This can be achieved by labeling the weight with some name, such as:

Sharing a weight (2x2 matrix weight)
Relation.my_rel["shared_weight": 2, 2]
Relation.another_rel["shared_weight": 2, 2]

Sharing a weight (vector weight)
Relation.my_rel["my_weight": 2,]
Relation.another_rel["my_weight": 2]

Modifiers

Predicate names are generally arbitrary, with no particular meaning other than the user-defined one.
However, by including a modifier in the definition of a relation, we may utilize some of the extra pre-defined predicates with special built-in functionality.

More about individual modifiers can be read in Modifiers.

Rules

Relation.h <= (Relation.b_one, Relation.b_n)

Rules are the core concept in PyNeuraLogic for describing the architectures of the models by defining templates for their computational graphs.
Each rule consists of two parts - the head and the body. The head is an arbitrary relation followed by an implication (<=) and subsequently the body formed from a tuple of n relations.

When there is only one relation in the body, we can omit the tuple and insert the relation directly.

Relation.h <= Relation.b

Such a rule can be then read as “The relation (proposition) ‘h’ is implied by the relation (proposition) ‘b’”

Metadata

The rules have some (default) properties that influence their translation into the computational graphs (models), such as activation and aggregation functions.
These properties can be modified, per rule, by attaching a Metadata instance to the rule.

from neuralogic.core import Metadata, Activation, Aggregation

(Relation.h <= (Relation.b_one, Relation.b_n)) | Metadata(activation=Activation.RELU, aggregation=Aggregation.AVG)

or, for short, just
(Relation.h <= (Relation.b_one, Relation.b_n)) | [Activation.RELU, Aggregation.AVG]

For example, with the construct above, we created a new rule with a specified activation function (relu) and aggregation function (avg).

Problem Definition

To approach relational machine learning problems with the PyNeuraLogic library in its full potential, we generally divide each learning scenario into (i) learning examples, (ii) queries, and (iii) a learning template. A set of learning examples together with the queries form a learning dataset. The learning template then constitues a “lifted” model architecture, i.e. a prescription for unfolding (differentiable) computational graphs.

Dataset

The dataset object holds factual information about the problem and is divided into two parts - (i) examples and (ii) queries.

Attention

In the context of examples and queries, the “weights” of the relations are, in fact, not learnable parameters but concrete values that serve as inputs (example features) or target outputs (query labels).

This means that it is not possible to use the dimensionality definition for the weight (value) in this case, as it does not represent a concrete value.

Examples

An example describes a specific learning instance, such as a graph, generally encoded through the language of ground relations/facts and rules. Intuitively, a learning example can be seen as the input to the model defined by a template.

Examples can be loaded from files in various formats, or encoded directly in Python in the NeuraLogic language.
For instance, a complete graph with three nodes and some features can be encoded as:

from neuralogic.core import Relation, Dataset

dataset = Dataset()

dataset.add_example([
 Relation.edge(1, 2), Relation.edge(2, 1), Relation.edge(1, 3),
 Relation.edge(3, 1), Relation.edge(2, 3), Relation.edge(3, 2),

 Relation.feature(1)[0],
 Relation.feature(2)[1],
 Relation.feature(3)[-1],
])

Queries

Queries are relations (facts) corresponding to the desired outputs of the learning model/template. These are commonly associated with (non-learnable) weights determining the expected values of the target (relation) labels, given some input example(s).

We might, for example, want to learn the output values of the unary relation (property) Relation.h of the entity anna to be 0, and for the entity elsa to be 1. This might be expressed like this:

dataset.add_queries([
 Relation.h('anna')[0],
 Relation.h('elsa')[1],
])

Note that, in constrast to classic machine learning labels, queries are not restricted to a single target “output” in the template, such as the “output layer” in classic neural models. We can thus ask different completely arbitray queries at the same time:

dataset.add_queries([
 Relation.h('anna')[0],
 Relation.h('elsa')[1],
 Relation.friend('anna','elsa')[1],
])

Also, the associated labels can be of arbitrary shapes. We can thus, for example, combine a query Relation.a[0] with a scalar label with a query Relation.b[[1, 0, 1]] with a vector label, each associated with a different part of the learning template.

Note

Queries are valued ground relations, but we don’t have to define the value explicitly. If the value is not present, the default value (1.0) is used as the label. This is useful, e.g., for queries outside the learning phase, where the labels are not needed/known.

A single learning example may then be associated with a single query, as common in classic supervised machine learning, or with multiple queries, as common e.g. in knowledge-base completion or collective classification tasks.

Tip

If the learning example does not change and is the same for every query, we can simly define only one example, and it will be reused for each query.

Template

The template (Template) is a set of rules that encode the lifted model architecture. Intuitively, this is somewhat similar to composing modules in the common deep learning frameworks, but more versatile. The versatility follows from the declarative nature of the rules, which can be highly abstract and expressive, just like the modules, yet directly reveal an interface to the underlying lower-level principles of the module’s computation.

Interpretation of Rules

TODO: Understanding rules

Understanding Rules

In PyNeuraLogic, describing a learning model differs from conventional deep learning frameworks.
Here, instead of putting together a sequence of modules and operations on numeric tensors, we define a model “template” formed from rules operating on relations.
This template is then used to unfold differentiable computational graphs, which may be tailored for each (relational) learning sample.

But how exactly do these rules translate into computational graphs?

The semantics of this process follows directly from logical inference, and is described in detail in the paper(s) on Lifted Relational Neural Networks [https://arxiv.org/abs/2007.06286]
However, let us skip the scientific notions here and take a direct look at the process through a simple example instead!

[image: Simple Graph]Consider the following relatively simple graph with arbitrarily picked node ids. Usually, we would encode the graph either as
an adjacency matrix, or simply a list of edges with two vectors - [[sources], [destinations]].
The latter representation for graphs is also available in PyNeuraLogic for convenience, but we will stick with the more general relational representation here, and describe the graph edges as R.edge(<source>, <destination>), that is:

[
 R.edge(3, 1), R.edge(2, 1), R.edge(4, 3), R.edge(4, 1),
 R.edge(1, 3), R.edge(1, 2), R.edge(3, 4), R.edge(1, 4),
]

And just like that, we encoded our example input graph with bidirectional edges. Let us now define few example templates to operate upon this graph, and dive into how they are being compiled into computational graphs.

An Entry Template

R.h(V.X) <= R.edge(V.X, V.Y)

The first template is relatively simple; it contains one rule with only one body relation R.edge(V.X, V.Y).
The rule roughly translates into plain English as

“To compute representation h of any entity X, aggregate all values of relations R.edge where the entity X is the “source” node of the relation edge.”

So, for example, for a query R.h(1), there are exactly three instances of the edge relation that satisfy the template rule -
R.edge(1, 2), R.edge(1, 3), and R.edge(1, 4), corresponding to the three neighbors of the node 1. So in the end, we end up with a computational graph like the one below.
The computation in the graph goes from the bottom (input) level up to the output level, which corresponds to our query.

[image: Computation graph]
Note

Notice that the input value of all the edge relations is 1. This value has been set implicitly because we didn’t provide any.

This visualization renders only the graph’s structure without specification of the operations on the values being passed through. However, every node in this graph can be associated with some function.

In this case, let us focus on the only node with multiple inputs, highlighted with the magenta color. This node is the so-called aggregation node that aggregates all of its inputs through some aggregation function (AVG by default) to produce a single output value.

value = AVG (value(...edge(1,2)), value(...edge(1,3)), value(...edge(1,4)))

Note how this functionality can be viewed as a basis for the “neighborhood aggregation” operation commonly utilized in Graph Neural Networks.

Note

What if we have a node without any edge and want to compute the R.h? We will get an exception because we cannot satisfy the rule. Later in this tutorial, we will look at solutions to such a scenario.

Multiple Body Relations

Our first template was very limited in what we were able to express.
We will often find ourselves declaring rules with multiple body relations to capture more complicated computational patterns.
As an example of such a template rule, we could introduce a feature relation for the nodes and utilize it in the rule.
Also, we will introduce weights to the rule at the same time.

R.h(V.X)["a": 1,] <= (R.edge(V.X, V.Y)["b": 1,], R.feature(V.Y)["c": 1,])

Note

We used named weights here to clarify how the weights are being mapped into the computational graph. However you can normally omit these names.

Now, let us extend our input data (the encoding of the input graph) with some node features correspondingly. For simplicity, each feature will be a simple scalar value, for example:

R.feature(1)[0.2], R.feature(2)[0.3], R.feature(3)[0.4], R.feature(4)[0.5]

Now, for the same query R.h(1), we will end up with the computational graph below.
Note how the bottom layer expanded with additional inputs (R.feature), and how the weights came upe associated with the corresponding edges.

[image: Computation graph with features]Let us now focus on a different “level” in the computational graph. This time, we highlight the nodes that correspond to the rule’s body (these were present in the previous example, too, however they were not so interesting as there was only one body relation at the input). In this case of a multitude of relations in the body of the rule, these again need to be combined somehow. By default, this operation is a weighted summation of the inputs with a nonlinearity (tanh) on top. Thus, for example, the value of the leftmost magenta node will be calculated as follows:

value = tanh ((0.3 * c) + (1 * b))

Multiple Rules

Now that we understand how multiple relations in the body of a rule are combined, and how the different instantiations of the body are aggregated, let us look at a scenario with two different rules with the same head relation.

R.h(V.X) <= (R.edge(V.X, V.Y), R.feature(V.Y)),
R.h(V.X) <= R.feature(V.X),

Up until now, to successfully derive R.h, the nodes were required to have edges. To mitigate this, we can add a second rule which will be satisfied for any node with some features. Let us take a look at how the mapping changed for this template on the same query R.h(1)

[image: Computation graph with two rules]Now, this additional rule introduced the rightmost branch highlighted with the magenta color. Note that this branch has the same structure as the left one, i.e. there is an aggregation node and node that “combines” the body relations. Nevertheles, in this case, there isn’t much to combine nor aggregate.

Another interesting point to note here is the operation of the topmost node that corresponds to the query, which now has multiple inputs, too. Consequently, these need to be combined somehow which, by default, is a (weighted) summation again.

Graph Readout

Up until now, we have been working with queries on top of one entity - node. What if we wanted to compute the value of relation R.h for all available nodes and then somehow aggregate them into one value, i.e., do a “graph readout”?

For that, we can yet again leverage the elegant expressiveness of relational logic. We can simply state, “Aggregate all values of the relation R.h for all entities X that satisfy the relation.”
Let us use a different query, R.q, for the readout in this case.

R.h(V.X) <= (R.edge(V.X, V.Y), R.feature(V.Y)),
R.h(V.X) <= R.feature(V.X),
R.q <= R.h(V.X),

In this case, there are no new operations to be discussed in the computational graph shown below. All of the R.h node computation will be unfolded into their respective subgraphs, e.g., the R.h(1) node will be unfolded to the graph from the previous example above.

[image: Computation graph with two rules]
Note

Note that the computational subgraphs for the individual nodes here will not be completely separate, i.e. the computational graph will not be a tree anymore, since the nodes share some of their neighbors in the input graph, too.

Activation and Aggregation functions

So far we focused solely on the structure of the computational graph, without specificying the indivudal operations/functions associated with the nodes. Let us now demonstrate how to customize these. For that, let is consider again the graph/template from the first (entry) example.

R.h(V.X) <= R.edge(V.X, V.Y)

If we would like to change the aggregation function of the rule, i.e. how all the values of the edges of each node are being aggregated, we can append that information to the rule as

(R.h(V.X) <= R.edge(V.X, V.Y)) | [Aggregation.MAX]

Should we want to further change the non-linear activation of the rule nodes, combining the rule body relations we would add:

(R.h(V.X) <= R.edge(V.X, V.Y)) | [Aggregation.MAX, Activation.SIGMOID]

Finally, to change the activation function of the head of the rule in the case with multiple rules with the same head:

R.h(V.X) <= (R.edge(V.X, V.Y), R.feature(V.Y)),
R.h(V.X) <= R.feature(V.X),

we would append that information to the head relation itself as:

R.h / 1 | [Activation.SIGMOID]

Note

The / 1 here defines the “arity” of the relation, which is necessary to uniquely identify the relation, since we can have multiple relations of the same name with different arities (and activation functions).

Model Evaluation

Model Building

When we have the template, examples, and queries ready, we need to ‘compile’ them together to retrieve a model that can be trained and evaluated.

The ‘compilation’ is done in two steps. Firstly, we retrieve a model instance for the specified backend.

from neuralogic.core import Backend, Settings

settings = Settings()
model = template.build(settings)

Then we can ‘build’ the examples and queries (dataset), yielding a multitude of computational graphs to be trained.

built_dataset = model.build_dataset(dataset)

Saving and Loading Model

When our model is trained, or we want to persist the model’s state (e.g., make a checkpoint),
we can utilize the model instance method state_dict() (or parameters()).
The method puts all parameters’ values into a dictionary that can be later saved (e.g., in JSON or in binary) or somehow manipulated.

When we want to load a state into our model, we can then simply pass the state into load_state_dict() method.

Note

Evaluators offer the same interface for saving/loading of the model.

Utilizing Evaluators

Writing custom training loops and handling different backends can be cumbersome and repetitive. The library offers ‘evaluators’ that encapsulate the training loop and testing evaluation. Evaluators also handle other responsibilities, such as building datasets.

from neuralogic.nn import get_evaluator

evaluator = get_evaluator(template, settings, Backend.JAVA)

Once you have an evaluator, you can evaluate or train the model on a dataset. The dataset doesn’t have to be pre-built, as in the case of classical evaluation - the evaluator handles that for you.

Note

If it is used more than once, it is more efficient to pass a pre-built dataset into the evaluator (this will prevent redundant dataset building).

Settings Instance

The Settings instance contains all the settings used to customize the behavior of different parts of the library.

Most importantly, it affects the behavior of the model building (e.g., specify default rule/relation activation functions), evaluators (e.g., error function, number of epochs, learning rate, optimizer),
and the model itself (e.g., initialization of the learnable parameters).

from neuralogic.core import Settings, Optimizer, Initializer
from neuralogic.nn.init import Uniform

Settings(
 initializer=Uniform(),
 optimizer=Optimizer.SGD,
 learning_rate=0.1,
 epochs=100,
)

In the example above, we define settings to ensure that initial values of learnable parameters (of the model these settings are used for) are sampled from the uniform distribution.
We also set properties utilized by evaluators: the number of epochs (\(100\)) and the optimizer,
which is set to Stochastic gradient descent (SGD) with a learning rate of \(0.1\).

Evaluator Training/Testing Interface

The evaluator’s basic interface consists of two methods - train and test for training on a dataset and evaluating on a dataset, respectively. Both methods have the same interface and are implemented in two modes - generator and non-generator.

The generator mode (default mode) yields a tuple of two elements (total loss and number of instances/samples) per each epoch. This mode can be useful when we want to, for example, visualize, log or do some other manipulations in real-time during the training (or testing).

for total_loss, seen_instances in neuralogic_evaluator.train(dataset):
 pass

The non-generator mode, on the other hand, returns only a tuple of metrics from the last epoch.

results = neuralogic_evaluator.train(dataset, generator=False)

🦓 Module Zoo

Welcome to our module zoo, the place where we discuss all pre-defined modules and outline how they are mapped to logic programs.

All modules listed here are defined in the neuralogic.nn.module package, and their usage is quite similar to the usage
of regular rules. You can add them to your template via the += operator or add_module method, e.g.:

from neuralogic.nn.module import GCNConv

template += GCNConv(...)
or
template.add_module(GCNConv(...))

Right after adding a module into a template, it is expanded into logic form - rules. This allows you to build upon
pre-defined modules and create new variations by adding your own custom rules or just mixing modules together.

Pre-defined Modules

GNN

	Module

	Edge formats

	GCNConv

	R.<edge_name>(<source>, <target>)

	SAGEConv

	R.<edge_name>(<source>, <target>)

	GINConv

	R.<edge_name>(<source>, <target>)

	RGCNConv

	R.<edge_name>(<source>, <relation>, <target>) or R.<relation>(<source>, <target>)

	TAGConv

	R.<edge_name>(<source>, <target>)

	GATv2Conv

	R.<edge_name>(<source>, <target>)

	SGConv

	R.<edge_name>(<source>, <target>)

	APPNPConv

	R.<edge_name>(<source>, <target>)

	ResGatedGraphConv

	R.<edge_name>(<source>, <target>)

General Blocks

	Module

	

	Linear

	

	MLP

	

	Recurrent/Recursive module

	

	RvNN

	

	RNN

	

	GRU

	

	LSTM

	

	Pooling module

	

	Pooling

	

	SumPooling

	

	AvgPooling

	

	MaxPooling

	

Meta

	Module

	

	MetaConv

	

	MAGNNMean

	

	MAGNNLinear

	

GNN Modules

	
class GCNConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Graph Convolutional layer from
“Semi-supervised Classification with Graph Convolutional Networks” [https://arxiv.org/abs/1609.02907].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\mathbf{W} \cdot {agg}_{j \in \mathcal{N}(i)}(\mathbf{x}_j))\]

Where act is an activation function, agg aggregation function and W is a learnable parameter. This equation is
translated into the logic form as:

(R.<output_name>(V.I)[<W>] <= (R.<feature_name>(V.J), R.<edge_name>(V.J, V.I))) | [<aggregation>, Activation.IDENTITY]
R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as GCNConv(2, 3, "h1", "h0", "_edge")) is as follows:

(R.h1(V.I)[3, 2] <= (R.h0(V.J), R._edge(V.J, V.I)) | [Aggregation.SUM, Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.SUM

	
class SAGEConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	GraphSAGE layer from “Inductive Representation Learning on Large Graphs” [https://arxiv.org/abs/1706.02216].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot
 {agg}_{j \in \mathcal{N}(i)}(\mathbf{x}_j)))\]

Where act is an activation function, agg aggregation function and W’s are learnable parameters.
This equation is translated into the logic form as:

(R.<output_name>(V.I)[<W1>] <= (R.<feature_name>(V.J), R.<edge_name>(V.J, V.I))) | [<aggregation>, Activation.IDENTITY]
(R.<output_name>(V.I)[<W2>] <= R.<feature_name>(V.I)) | [Activation.IDENTITY]
R.<output_name> / 1 | [<activation>]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.AVG

	
class GINConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	

	
class RGCNConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: ~typing.Optional[str], relations: ~typing.List[str], activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Relational Graph Convolutional layer from
Modeling Relational Data with Graph Convolutional Networks [https://arxiv.org/abs/1703.06103].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\mathbf{W_0} \cdot \mathbf{x}_i + \sum_{r \in \mathcal{R}}
{agg}_{j \in \mathcal{N}_r(i)}(\mathbf{W_r} \cdot \mathbf{x}_j))\]

Where act is an activation function, agg aggregation function (by default average), \(W_0\) is a
learnable root parameter and \(W_r\) is a learnable parameter for each relation.

The first part of the equation that is “\(\mathbf{W_0} \cdot \mathbf{x}_i\)” can be expressed
in the logic form as:

R.<output_name>(V.I) <= R.<feature_name>(V.I)[<W0>]

Another part of the equation that is “\({agg}_{j \in \mathcal{N}_r(i)}(\mathbf{W_r} \cdot \mathbf{x}_j)\)”
can be expressed as:

R.<output_name>(V.I) <= (R.<feature_name>(V.J)[<Wr>], R.<edge_name>(V.J, relation, V.I))

where “relation” is a constant name, or as:

R.<output_name>(V.I) <= (R.<feature_name>(V.J)[<Wr>], R.<relation>(V.J, V.I))

The outer summation, together with summing it with the first part, is handled by aggregation of all rules with the
same head (and substitution).

Examples

The whole computation of this module
(parametrized as RGCNConv(1, 2, "h1", "h0", "_edge", ["sibling", "parent"])) is as follows:

metadata = Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.AVG)

(R.h1(V.I) <= R.h0(V.I)[2, 1]) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R._edge(V.J, sibling, V.I))) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R._edge(V.J, parent, V.I))) | metadata
R.h1 / 1 [Activation.IDENTITY]

Module parametrized as RGCNConv(1, 2, "h1", "h0", None, ["sibling", "parent"]) translates into:

metadata = Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.AVG)

(R.h1(V.I) <= R.h0(V.I)[2, 1]) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R.sibling(V.J, V.I))) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R.parent(V.J, V.I))) | metadata
R.h1 / 1 [Activation.IDENTITY]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (Optional[str]) – Edge predicate name to use for neighborhood relations. When None, elements from relations
are used instead.

	relations (List[str]) – List of relations’ names

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.SUM

	
class TAGConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, k: int = 2, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Topology Adaptive Graph Convolutional layer from
“Topology Adaptive Graph Convolutional Networks” [https://arxiv.org/abs/1710.10370].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\sum_{k=0}^K \mathbf{W}_k \cdot {agg}_{j \in \mathcal{N}^k(i)}(\mathbf{x}_j))\]

Where act is an activation function, agg aggregation function, Wk are learnable parameters and
\(\mathcal{N}^k(i)\) denotes nodes that are k hops away from the node i. This equation is translated into
the logic form as:

This equation is translated into the logic form as:

(R.<output_name>(V.I0)[<W0>] <= R.<feature_name>(V.I0)) | [<aggregation>, Activation.IDENTITY]
(R.<output_name>(V.I0)[<W1>] <= (R.<feature_name>(V.I1), R.<edge_name>(V.I1, V.I0))) | [<aggregation>, Activation.IDENTITY]
(R.<output_name>(V.I0)[<W2>] <= (R.<feature_name>(V.I2), R.<edge_name>(V.I1, V.I0), R.<edge_name>(V.I2, V.I1)) | [<aggregation>, Activation.IDENTITY]
...
(R.<output_name>(V.I0)[<Wk>] <= (R.<feature_name>(V.I<k>), R.<edge_name>(V.I1, V.I0), ..., R.<edge_name>(V.I<k>, V.I<k-1>)) | [<aggregation>, Activation.IDENTITY]
R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as TAGConv(1, 2, "h1", "h0", "_edge")) is as follows:

(R.h1(V.I0)[2, 2] <= R.h0(V.I0)) | [Aggregation.SUM, Activation.IDENTITY]
(R.h1(V.I0)[2, 1] <= (R.h0(V.I1), R._edge(V.I1, V.I0)) | [Aggregation.SUM, Activation.IDENTITY]
(R.h1(V.I0)[2, 1] <= (R.h0(V.I2), R._edge(V.I1, V.I0), R._edge(V.I2, V.I1)) | [Aggregation.SUM, Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

Module parametrized as TAGConv(1, 2, "h1", "h0", "_edge", 1) translates into:

(R.h1(V.I0)[2, 1] <= R.h0(V.I0)) | [Aggregation.SUM, Activation.IDENTITY]
(R.h1(V.I0)[2, 1] <= (R.h0(V.I1), R._edge(V.I1, V.I0)) | [Aggregation.SUM, Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	k (int) – Number of hops.
Default: 2

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.SUM

	
class GATv2Conv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, share_weights: bool = False, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>)

	GATv2 layer from “How Attentive are Graph Attention Networks?” [https://arxiv.org/abs/2105.14491].

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	share_weights (bool) – Share weights in attention. Default: False

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	
class SGConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, k: int = 1, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Simple Graph Convolutional layer from “Simplifying Graph Convolutional Networks” [https://arxiv.org/abs/1902.07153].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\mathbf{W} \cdot {agg}_{j \in \mathcal{N}^k(i)}(\mathbf{x}_j))\]

Where act is an activation function, agg aggregation function, W is a learnable parameter
and \(\mathcal{N}^k(i)\) denotes nodes that are k hops away from the node i.
This equation is translated into the logic form as:

(R.<output_name>(V.I)[<W>] <= (
 R.<feature_name>(V.I<k>),
 R.<edge_name>(V.I<1>, V.I<0>), R.<edge_name>(V.I<2>, V.I<1>), ..., R.<edge_name>(V.I<k>, V.I<k-1>),
)) | [<aggregation>, Activation.IDENTITY]

R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as SGConv(2, 3, "h1", "h0", "_edge", 2)) is as follows:

(R.h1(V.I0)[3, 2] <= (R.h0(V.I2), R._edge(V.I1, V.I0), R._edge(V.I2, V.I1))) | [Activation.IDENTITY, Aggregation.SUM]
R.h1 / 1 | [Activation.IDENTITY]

Module parametrized as SGConv(2, 3, "h1", "h0", "_edge", 1) translates into:

(R.h1(V.I0)[3, 2] <= (R.h0(V.I1), R._edge(V.I1, V.I0))) | [Activation.IDENTITY, Aggregation.SUM]
R.h1 / 1 | [Activation.IDENTITY]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	k (int) – Number of hops.
Default: 1

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.SUM

	
class APPNPConv(output_name: str, feature_name: str, edge_name: str, k: int, alpha: float, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Approximate Personalized Propagation of Neural Predictions layer from
“Predict then Propagate: Graph Neural Networks meet Personalized PageRank” [https://arxiv.org/abs/1810.05997].
Which can be expressed as:

\[\mathbf{x}^{0}_i = \mathbf{x}_i\]

\[\mathbf{x}^{k}_i = \alpha \cdot \mathbf{x}^0_i + (1 - \alpha) \cdot
{agg}_{j \in \mathcal{N}(i)}(\mathbf{x}^{k - 1}_j)\]

\[\mathbf{x}^{\prime}_i = act(\mathbf{x}^{K}_i)\]

Where act is an activation function and agg aggregation function.

The first part of the second equation that is “\(\alpha \cdot \mathbf{x}^0_i\)” is expressed
in the logic form as:

R.<output_name>__<k>(V.I) <= R.<feature_name>(V.I)[<alpha>].fixed()

The second part of the second equation that is
“\((1 - \alpha) \cdot {agg}_{j \in \mathcal{N}(i)}(\mathbf{x}^{k - 1}_j)\)” is expressed as:

R.<output_name>__<k>(V.I) <= (R.<output_name>__<k-1>(V.J)[1 - <alpha>].fixed(), R.<edge_name>(V.J, V.I))

Examples

The whole computation of this module
(parametrized as APPNPConv("h1", "h0", "_edge", 3, 0.1, Activation.SIGMOID)) is as follows:

metadata = Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.SUM)

(R.h1__1(V.I) <= R.h0(V.I)[0.1].fixed()) | metadata
(R.h1__1(V.I) <= (R.h0(V.J)[0.9].fixed(), R._edge(V.J, V.I))) | metadata
R.h1__1/1 [Activation.IDENTITY]

(R.h1__2(V.I) <= <0.1> R.h0(V.I)) | metadata
(R.h1__2(V.I) <= (<0.9> R.h1__1(V.J), R._edge(V.J, V.I))) | metadata
R.h1__2/1 [Activation.IDENTITY]

(R.h1(V.I) <= <0.1> R.h0(V.I)) | metadata
(R.h1(V.I) <= (<0.9> R.h1__2(V.J), R._edge(V.J, V.I))) | metadata
R.h1 / 1 [Activation.SIGMOID]

	Parameters

	
	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	k (int) – Number of iterations

	alpha (float) – Teleport probability

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.SUM

	
class ResGatedGraphConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, gating_activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Residual Gated Graph Convolutional layer from “Residual Gated Graph ConvNets” [https://arxiv.org/abs/1711.07553].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\mathbf{W}_1 \mathbf{x}_i +
 {agg}_{j \in \mathcal{N}(i)}(\eta_{i,j} \odot \mathbf{W}_2 \mathbf{x}_j))\]

\[\mathbf{\eta}_{i,j} = gating_act(\mathbf{W}_3 \mathbf{x}_i + \mathbf{W}_4 \mathbf{x}_j)\]

Where act is an activation function, agg aggregation function, gating_act is a gating activation function and
\(W_n\) are learnable parameters. This equation is translated into the logic form as:

(R.<output_name>__gate(V.I, V.J) <= (R.<feature_name>(V.I)[<W>], R.<feature_name>(V.J)[<W>])) | [Activation.IDENTITY]
R.<output_name>__gate / 2 | [<activation>]

(R.<output_name>(V.I) <= R.<feature_name>(V.I)[<W>]) | [Activation.IDENTITY]
(R.<output_name>(V.I) <= (
 R.<output_name>__gate(V.I, V.J), R.<feature_name>(V.J)[<W>], R.<edge_name>(V.J, V.I))
) | Metadata(activation="elementproduct-identity", aggregation=<aggregation>)

R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as ResGatedGraphConv(1, 2, "h1", "h0", "_edge"))
is as follows:

metadata = Metadata(activation="elementproduct-identity", aggregation=Aggregation.SUM)

(R.h1__gate(V.I, V.J) <= (R.h0(V.I)[2, 1], R.h0(V.J)[2, 1])) | [Activation.IDENTITY]
R.h1__gate / 2 | [Activation.SIGMOID]

(R.h1(V.I) <= R.h0(V.I)[2, 1]) | [Activation.IDENTITY]
(R.h1(V.I) <= (R.h1__gate(V.I, V.J), R.h0(V.J)[2, 1], R._edge(V.J, V.I))) | metadata
R.h1 / 1 | [Activation.IDENTITY]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	edge_name (str) – Edge predicate name to use for neighborhood relations.

	gating_activation (Activation) – Gating activation function.
Default: Activation.SIGMOID

	activation (Activation) – Activation function of the output.
Default: Activation.IDENTITY

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.SUM

General Block Modules

	
class Linear(in_channels: int, out_channels: int, output_name: str, input_name: str, activation: ~neuralogic.core.constructs.function.Function = <neuralogic.core.constructs.function.Activation object>, arity: int = 1)

	Apply linear transformation on the input. Can be expressed as:

\[h_{i_0, .., i_{n}} = W \cdot x_{i_0, .., i_{n}}\]

Where \(x\) is the input, \(W \in R^{(out_channels \times in_channels)}\) is a learnable parameter,
and \(n\) is the arity of the input and output.

It is also possible to attach non-linearity via the activation parameter and compute:

\[h_{i_0, .., i_{n}} = act(W \cdot x_{i_0, .., i_{n}})\]

Example

The whole computation of this module (parametrized as Linear(1, 2, "h1", "h0")) is as follows:

(R.h1(V.X0)[2, 1] <= R.h0(V.X0)) | [Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

Module parametrized as Linear(1, 2, "h1", "h0", Activation.SIGMOID, 2) translates into:

(R.h1(V.X0, V.X1)[2, 1] <= R.h0(V.X0, V.X1)) | [Activation.IDENTITY]
R.h1 / 2 | [Activation.SIGMOID]

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input name.

	activation (Function) – Activation function of the output.
Default: Activation.IDENTITY

	arity (int) – Arity of the input and output predicate. Default: 1

	
class MLP(units: ~typing.List[int], output_name: str, input_name: str, activation: ~typing.Union[~neuralogic.core.constructs.function.Function, ~typing.List[~neuralogic.core.constructs.function.Function]] = <neuralogic.core.constructs.function.Activation object>)

	
	Parameters

	
	units (List[int]) – List of layer sizes.

	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input name.

	activation (Union[Function, List[Function]]) – Activation function of all layers or list of activations for each layer.
Default: Activation.RELU

	
class RvNN(input_size: int, output_name: str, input_name: str, parent_map_name: str, max_children: int = 2, activation: ~neuralogic.core.constructs.function.Function = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Function = <neuralogic.core.constructs.function.Aggregation object>, arity: int = 1)

	Recursive Neural Network (RvNN) module which is computed as:

\[\mathbf{h}_i = act(agg_{j \in \mathcal{Ch(i)}}(\mathbf{W_{id(j)}} \mathbf{h}_j))\]

Where \(act\) is an activation function, \(agg\) aggregation function and \(\mathbf{W}\)’s
are learnable parameters. \(\mathcal{Ch(i)}\) represents the ordered list of children of node \(i\).
The \(id(j)\) function maps node \(j\) to its index (position) in its parent’s children list.

	Parameters

	
	input_size (int) – Input feature size.

	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input feature predicate name to get leaf features from.

	parent_map_name (str) – Name of the predicate to get mapping from parent to children

	max_children (int) – Maximum number of children (specify which <max_children>-ary tree will be considered).
Default: 2

	activation (Function) – Activation function of all layers.
Default: Activation.TANH

	aggregation (Function) – Aggregation function of a layer.
Default: Activation.SUM

	arity (int) – Arity of the input and output predicate (doesn’t include the node id term). Default: 1

	
class RNN(input_size: int, hidden_size: int, sequence_length: int, output_name: str, input_name: str, hidden_0_name: str, activation: ~neuralogic.core.constructs.function.Function = <neuralogic.core.constructs.function.Activation object>, arity: int = 1, next_name: str = '_next__positive')

	One-layer Recurrent Neural Network (RNN) module which is computed as:

\[h_t = act(\mathbf{W}_{ih} \mathbf{x}_t + \mathbf{W}_{hh} \mathbf{h}_{t-1})\]

where \(t \in (1, sequence_length + 1)\) is a time step.
In the template, the \(t\) is referred to as V.T, and \(t - 1\) is referred to as V.Z.
This module expresses the first equation as:

(R.<output_name>(<...terms>, V.T) <= (
 R.<input_name>(<...terms>, V.T)[<hidden_size>, <input_size>],
 R.<hidden_input_name>(<...terms>, V.Z)[<hidden_size>, <hidden_size>],
 R.<next_name>(V.Z, V.T),
)) | [<activation>]

R.<output_name> / <arity> + 1 | [Activation.IDENTITY]

Additionally, we define rules for the recursion purpose
(the positive integer sequence R.<next_name>(V.Z, V.T)) and the “stop condition”, that is:

(R.<output_name>(<...terms>, 0) <= R.<hidden_0_name>(<...terms>)) | [Activation.IDENTITY]

	Parameters

	
	input_size (int) – Input feature size.

	hidden_size (int) – Output and hidden feature size.

	sequence_length (int) – Sequence length.

	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input feature predicate name to get features from.

	hidden_0_name (str) – Predicate name to get initial hidden state from.

	activation (Function) – Activation function.
Default: Activation.TANH

	arity (int) – Arity of the input and output predicate. Default: 1

	next_name (str) – Predicate name to get positive integer sequence from.
Default: _next__positive

	
class GRU(input_size: int, hidden_size: int, sequence_length: int, output_name: str, input_name: str, hidden_0_name: str, arity: int = 1, next_name: str = '_next__positive')

	One-layer Gated Recurrent Unit (GRU) module which is computed as:

\[\begin{split}r_t = \sigma(\mathbf{W}_{xr} \mathbf{x}_t + \mathbf{W}_{hr} \mathbf{h}_{t-1}) \\\end{split}\]

\[\begin{split}z_t = \sigma(\mathbf{W}_{xz} \mathbf{x}_t + \mathbf{W}_{hz} \mathbf{h}_{t-1}) \\\end{split}\]

\[\begin{split}n_t = \tanh(\mathbf{W}_{xn} \mathbf{x}_t + r_t \odot (\mathbf{W}_{hn} \mathbf{h}_{t-1})) \\\end{split}\]

\[h_t = (1 - z_t) \odot n_t + z_t \odot h_{t-1}\]

where \(t \in (1, sequence_length + 1)\) is a time step.
In the template, the \(t\) is referred to as V.T, and \(t - 1\) is referred to as V.Z.
This module expresses the first equation as:

(R.<output_name>__r(<...terms>, V.T) <= (
 R.<input_name>(<...terms>, V.T)[<hidden_size>, <input_size>],
 R.<hidden_input_name>(<...terms>, V.Z)[<hidden_size>, <hidden_size>],
 R.<next_name>(V.Z, V.T),
)) | [Activation.SIGMOID]

R.<output_name>__r / <arity> + 1 | [Activation.IDENTITY]

The second equation is expressed in the same way, except for a different head predicate name. The third equation is
split into three rules. The first two computes the element-wise product -
\(r_t * (\mathbf{W}_{hn} \mathbf{h}_{t-1})\).

(R.<output_name>__n_helper_weighted(<...terms>, V.T) <= (
 R.<hidden_input_name>(<...terms>, V.Z)[<hidden_size>, <hidden_size>], R.<next_name>(V.Z, V.T),
)) | [Activation.IDENTITY],

R.<output_name>__n_helper_weighted / (<arity> + 1) | [Activation.IDENTITY],

(R.<output_name>__n_helper(<...terms>, V.T) <= (
 R.<output_name>__r(<..terms>, V.T), R.<>__n_helper_weighted(<...terms>, V.T)
)) | Metadata(activation="elementproduct-identity"),

R.<output_name>__n_helper / (<arity> + 1) | [Activation.IDENTITY],

The third one computes the sum and applies the \(tanh\) activation function.

(R.<output_name>__n(<...terms>, V.T) <= (
 R.<input_name>(<...terms>, V.T)[<hidden_size>, <input_size>],
 R.<output_name>__n_helper(<...terms>, V.T)
)) | [Activation.TANH]
R.<output_name>__n / (<arity> + 1) | [Activation.IDENTITY],

The last equation is computed via three rules. The first two rules computes element-wise products. That is:

(R.<output_name>__left(<...terms>, V.T) <= (
 R.<output_name>__z(<...terms>, V.T), R.<output_name>__n(<...terms>, V.T)
)) | Metadata(activation="elementproduct-identity")

(R.<output_name>__right(<...terms>, V.T) <= (
 R.<output_name>__z(<...terms>, V.T), R.<hidden_input_name>(<...terms>, V.Z), R.<next_name>(V.Z, V.T),,
)) | Metadata(activation="elementproduct-identity")

R.<output_name>__left / <arity> + 1 | [Activation.IDENTITY]
R.<output_name>__right / <arity> + 1 | [Activation.IDENTITY]

The last output rule sums up the element-wise products.

(R.<output_name>(<...terms>, V.T) <= (
 R.<output_name>__left(<...terms>, V.T), R.<output_name>__right(<...terms>, V.T)
)) | [Activation.IDENTITY]
R.<output_name> / <arity> + 1 | [Activation.IDENTITY],

Additionally, we define rules for the recursion purpose
(the positive integer sequence R.<next_name>(V.Z, V.T)) and the “stop condition”, that is:

(R.<output_name>(<...terms>, 0) <= R.<hidden_0_name>(<...terms>)) | [Activation.IDENTITY]

	Parameters

	
	input_size (int) – Input feature size.

	hidden_size (int) – Output and hidden feature size.

	sequence_length (int) – Sequence length.

	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input feature predicate name to get features from.

	hidden_0_name (str) – Predicate name to get initial hidden state from.

	arity (int) – Arity of the input and output predicate. Default: 1

	next_name (str) – Predicate name to get positive integer sequence from.
Default: _next__positive

	
class LSTM(input_size: int, hidden_size: int, sequence_length: int, output_name: str, input_name: str, hidden_0_name: str, cell_state_0_name: str, arity: int = 1, next_name: str = '_next__positive')

	One-layer Long Short-Term Memory (LSTM) RNN module which is computed as:

\[i_t = \sigma(\mathbf{W}_{xi} \mathbf{x}_t + \mathbf{W}_{hi} \mathbf{h}_{t-1})\]

\[f_t = \sigma(\mathbf{W}_{xf} \mathbf{x}_t + \mathbf{W}_{hf} \mathbf{h}_{t-1})\]

\[o_t = \sigma(\mathbf{W}_{xo} \mathbf{x}_t + \mathbf{W}_{ho} \mathbf{h}_{t-1})\]

\[\begin{split}g_t = \tanh(\mathbf{W}_{xg} \mathbf{x}_t + \mathbf{W}_{hg} \mathbf{h}_{t-1}) \\\end{split}\]

\[c_t = f_t \odot c_{t-1} + i_t \odot g_t\]

\[h_t = o_t \odot \tanh(c_t)\]

	Parameters

	
	input_size (int) – Input feature size.

	hidden_size (int) – Output and hidden feature size.

	sequence_length (int) – Sequence length.

	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input feature predicate name to get features from.

	hidden_0_name (str) – Predicate name to get initial hidden state from.

	cell_state_0_name (str) – Predicate name to get initial cell state from.

	arity (int) – Arity of the input and output predicate. Default: 1

	next_name (str) – Predicate name to get positive integer sequence from.
Default: _next__positive

	
class Pooling(output_name: str, input_name: str, aggregation: Function, input_arity: int = 1)

	Apply generic pooling over the input specified by the input_name and the input arity parameters.
Can be expressed as:

\[h = agg_{i_{0}, .., i_{n} \in N}(x_{(i_{0}, .., i_{n})})\]

Where \(N\) is a set of tuples of length \(n\) (specified by the input arity parameter)
that are valid arguments for the input predicate.

For example, a classic pooling over graph nodes represented by relations of arity 1 (node id)
would be calculated as:

\[h = agg_{i \in N}(x_{(i)})\]

Here \(N\) refers to a set of all node ids. Lifting the restriction of the input arity via the input_arity
parameter allows for pooling not only nodes but also edges (input_arity=2) and other objects (hyperedges etc.)

Examples

The whole computation of this module (parametrized as Pooling("h1", "h0", Aggregation.AVG)) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.AVG, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

Module parametrized as Pooling("h1", "h0", Aggregation.MAX, 2) translates into:

(R.h1 <= R.h0(V.X0, V.X1)) | [Aggregation.MAX, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

	Parameters

	
	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input name.

	aggregation (Function) – Aggregation function.

	input_arity (int) – Arity of the input predicate input_name. Default: 1

	
class SumPooling(output_name: str, input_name: str, input_arity: int = 1)

	Apply sum pooling over the input specified by the input_name and the input arity parameters.
Can be expressed as:

\[h = \sum_{i_{0}, .., i_{n} \in N} x_{(i_{0}, .., i_{n})}\]

Where \(N\) is a set of tuples of length \(n\) (specified by the input arity parameter)
that are valid arguments for the input predicate.

This module extends the generic pooling Pooling.

Examples

The whole computation of this module (parametrized as SumPooling("h1", "h0")) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.SUM, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

	Parameters

	
	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input name.

	input_arity (int) – Arity of the input predicate input_name. Default: 1

	
class AvgPooling(output_name: str, input_name: str, input_arity: int = 1)

	Apply average pooling over the input specified by the input_name and the input arity parameters.
Can be expressed as:

\[h = \frac{1}{|N|}\sum_{i_{0}, .., i_{n} \in N} x_{(i_{0}, .., i_{n})}\]

Where \(N\) is a set of tuples of length \(n\) (specified by the input arity parameter)
that are valid arguments for the input predicate.

This module extends the generic pooling Pooling.

Examples

The whole computation of this module (parametrized as AvgPooling("h1", "h0")) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.AVG, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

	Parameters

	
	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input name.

	input_arity (int) – Arity of the input predicate input_name. Default: 1

	
class MaxPooling(output_name: str, input_name: str, input_arity: int = 1)

	Apply max pooling over the input specified by the input_name and the input arity parameters.
Can be expressed as:

\[h = max_{i_{0}, .., i_{n} \in N}(x_{(i_{0}, .., i_{n})})\]

Where \(N\) is a set of tuples of length \(n\) (specified by the input arity parameter)
that are valid arguments for the input predicate.

This module extends the generic pooling Pooling.

Examples

The whole computation of this module (parametrized as MaxPooling("h1", "h0")) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.MAX, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

	Parameters

	
	output_name (str) – Output (head) predicate name of the module.

	input_name (str) – Input name.

	input_arity (int) – Arity of the input predicate input_name. Default: 1

Meta Modules

	
class MetaConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, role_name: ~typing.Optional[str], roles: ~typing.List[str], activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Metagraph Convolutional Unit layer from
Meta-GNN: metagraph neural network for semi-supervised learning in attributed heterogeneous information networks [https://dl.acm.org/doi/10.1145/3341161.3342859].
Which can be expressed as:

\[\mathbf{x}^{\prime}_i = act(\mathbf{W_0} \cdot \mathbf{x}_i + {agg}_{j \in \mathcal{N}_r(i)}
\sum_{k \in \mathcal{K}}
(\mathbf{W_k} \cdot \mathbf{x}_j))\]

Where act is an activation function, agg aggregation function (by default average), \(W_0\) is a learnable
root parameter and \(W_k\) is a learnable parameter for each role.

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	role_name (Optional[str]) – Role predicate name to use for role relations. When None, elements from roles are used instead.

	roles (List[str]) – List of relations’ names

	activation (Activation) – Activation function of the output.
Default: Activation.SIGMOID

	aggregation (Aggregation) – Aggregation function of nodes’ neighbors.
Default: Aggregation.AVG

	
class MAGNNMean(output_name: str, feature_name: str, relation_name: str, type_name: ~typing.Optional[str], meta_paths: ~typing.List[str], activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Intra-metapath Aggregation module with Mean encoder from
“MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding” [https://arxiv.org/abs/2002.01680].
Which can be expressed as:

\[\mathbf{h}_{P(v,u)} = MEAN(\{\mathbf{x}_t | \forall t \in P(v,u) \})\]

\[\mathbf{h}^P_{v} = act(\sum_{u \in N^P_v} \mathbf{h}_{P(v,u)})\]

Where act is an activation function, \(P(v,u)\) is a single metapath instance, \(N^P_{v}\) is set of
metapath-based neighbors.

	Parameters

	
	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	relation_name (str) – Relation predicate name for connectivity checks between entities.

	type_name (Optional[str]) – Metapath type predicate name. If none, meta_paths will be used instead.

	meta_paths (List[str]) – Name of types forming a single metapath.

	activation (Activation) – Activation function of the output.
Default: Activation.SIGMOID

	
class MAGNNLinear(in_channels: int, out_channels: int, output_name: str, feature_name: str, relation_name: str, type_name: ~typing.Optional[str], meta_paths: ~typing.List[str], activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, aggregation: ~neuralogic.core.constructs.function.Aggregation = <neuralogic.core.constructs.function.Aggregation object>)

	Intra-metapath Aggregation module with Linear encoder from
“MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding” [https://arxiv.org/abs/2002.01680].
Which can be expressed as:

\[\mathbf{h}_{P(v,u)} = \mathbf{W}_p \cdot MEAN(\{\mathbf{x}_t | \forall t \in P(v,u) \})\]

\[\mathbf{h}^P_{v} = act(\sum_{u \in N^P_v} \mathbf{h}_{P(v,u)})\]

Where act is an activation function, \(P(v,u)\) is a single metapath instance, \(N^P_{v}\) is set of
metapath-based neighbors.

	Parameters

	
	in_channels (int) – Input feature size.

	out_channels (int) – Output feature size.

	output_name (str) – Output (head) predicate name of the module.

	feature_name (str) – Feature predicate name to get features from.

	relation_name (str) – Relation predicate name for connectivity checks between entities.

	type_name (Optional[str]) – Metapath type predicate name. If none, meta_paths will be used instead.

	meta_paths (List[str]) – Name of types forming a single metapath.

	activation (Activation) – Activation function of the output.
Default: Activation.SIGMOID

Advanced Usage

	
Heterogeneous Graphs

Learn how to represent heterogeneous graphs and possible ways to incorporate rules utilizing them into your templates.

	
Utilizing Inference Engine

PyNeuraLogic offers to utilize its engine only for inference as well. This section goes through an example to showcase the usage of the inference engine, to get all possible substitutions satisfying our queries.

	
Fuzzy Relational Inference Engine

You can also extend the inference engine from the previous section and utilize numeric relations’ values. For example, to compute the shortest paths between points as in this example!

	
Modifiers

Some relations can have special meanings and functionalities. You can find out more about them here.

	
Visualization

Having a visual representation of your model can help you get a better insight. Learn how to utilize prepared tools to visualize your models/templates and samples.

	
Recursive XOR Generalization

Learn how recursive templates can be defined and utilized!

	
Java Settings, Logging and Debugging

In this section, we go through all the different settings of the backend engine, such as using its logging, debugging, passing additional JVM arguments, etc.

Heterogeneous Graphs

Most GNN models consider graphs to be homogeneous - that is, all nodes being of one type, despite many possible
instances of problems, where it would be beneficial to utilize information about entities’ types and their relations’
types. In PyNeuraLogic, we can easily encode instances of such heterogeneous graphs with an arbitrary number of nodes’
and edges’ classes out of the box.

[image: Heterogeneous graph]

Let’s consider the graph in the above figure, where nodes’ color represents their type (either Blue or Pink).
We can represent introduced nodes’ types in the input examples, for example, as the following list of ground relations:

Relation.type(1, Term.BLUE),
Relation.type(2, Term.BLUE),
Relation.type(3, Term.PINK),
Relation.type(4, Term.PINK),
Relation.type(5, Term.PINK),

Note

Note that there are many ways to express the same concept. We could, for example, encode types (for nodes 1 and 3)
as Relation.blue(1), Relation.pink(3). Nodes are also not limited to have only one type; we can assign multiple
types to one node, such as Relation.type(1, Term.BLUE), Relation.type(1, Term.PINK).

Note

In this example, we consider only nodes’ types, but we can analogically encode edges’ (or any other) types.

We can then utilize the information about types for various use cases. In the following example, we showcase a template
rule for the aggregation of neighbor nodes of the central node with the same type as the central node.

Relation.h(Var.X) <= (
 Relation.feature(Var.Y),
 Relation.type(Var.X, Var.Type),
 Relation.type(Var.Y, Var.Type),
 Relation.edge(Var.Y, Var.X),
)

Since types are just regular constructs (relations) in PyNeuraLogic, we are able to manipulate them as anything else.
We can, for example, create hierarchies of types or, as is shown in the following example, attach features to types in
input examples and then utilize them in the aggregation.

Relation.type_feature(Term.BLUE)[[1, 2, 3]]

Relation.h(Var.X) <= (
 Relation.feature(Var.Y),
 Relation.type_feature(Var.Type),
 Relation.type(Var.Y, Var.Type),
 Relation.edge(Var.Y, Var.X),
)

Utilizing Inference Engine

While translating logic programs into computations graphs, PyNeuraLogic utilizes an inference engine [https://en.wikipedia.org/wiki/Inference_engine].
The inference engine serves for deducing information from the input knowledge base encoded in examples or a template.
For convenience, this functionality is also exposed via a high-level interface to be accessible for users.

London Underground Example

The interface for the inference engine is relatively simple. Consider the following example based on the “Simply Logical: Intelligent Reasoning by Example” book [https://book.simply-logical.space/] by Peter Flach.
We have a network based on a part of the London Underground encoded as a directed graph as visualized in the following image.

[image: London Underground]

This graph can be encoded as connected(From, To, Line) such as:

from neuralogic.core import Template, R, V, T

template = Template()
template += [
 R.connected(T.bond_street, T.oxford_circus, T.central),
 R.connected(T.oxford_circus, T.tottenham_court_road, T.central),
 R.connected(T.bond_street, T.green_park, T.jubilee),
 R.connected(T.green_park, T.charing_cross, T.jubilee),
 R.connected(T.green_park, T.piccadilly_circus, T.piccadilly),
 R.connected(T.piccadilly_circus, T.leicester_square, T.piccadilly),
 R.connected(T.green_park, T.oxford_circus, T.victoria),
 R.connected(T.oxford_circus, T.piccadilly_circus, T.bakerloo),
 R.connected(T.piccadilly_circus, T.charing_cross, T.bakerloo),
 R.connected(T.tottenham_court_road, T.leicester_square, T.northern),
 R.connected(T.leicester_square, T.charing_cross, T.northern),
]

This template essentially encodes only direct connections between stations (nodes).
We might want to extend this knowledge by deducing which stations are nearby - stations with at most one station between them.

So stations are nearby if they are directly connected, which can be expressed as:

template += R.nearby(V.X, V.Y) <= R.connected(V.X, V.Y, V.L)

Stations are also nearby if exactly one station lays on the path between those two stations and are on the same line.

template += R.nearby(V.X, V.Y) <= (R.connected(V.X, V.Z, V.L), R.connected(V.Z, V.Y, V.L))

Now we can ask the inference engine to get all sorts of different information, such as what stations are nearby the Tottenham Court Road station.

from neuralogic.inference.inference_engine import InferenceEngine

engine = InferenceEngine(template)

engine.q(R.nearby(T.tottenham_court_road, V.X))

Running the query (or q) will return a generator of dictionaries with all possible substitutions for all variables in the query.
In this case, we have only one variable in the query (V.X). As you can see, the inference engine found all stations that are nearby the Tottenham Court Road station (Leicester Square and Charing Cross).

[
 {"X": "leicester_square"},
 {"X": "charing_cross"},
]

We could also ask the inference engine to get all possible nearby stations (R.nearby(V.X, V.Y)) and so on.

Finding Path Recursively

We can also define another rule to check a generic path from a station X to another station Y.
We will call this rule reachable and use recursion in its definition. The reachable rule is satisfied if two stations are directly connected or station X is connected to station Z from which you can reach Y.

template += R.reachable(V.X, V.Y) <= R.connected(V.X, V.Y, V.L)
template += R.reachable(V.X, V.Y) <= (R.connected(V.X, V.Z, V.L), R.reachable(V.Z, V.Y))

Now we can ask the inference engine what stations we can reach from a station or ask more exact queries such as if two specific stations are reachable.

engine = InferenceEngine(template)

if engine.query(R.reachable(T.green_park, T.tottenham_court_road)):
 print("Yes, you can reach Tottenham Court Road from Green Park")
else:
 print("Those two stations are reachable, so this should never be printed out")

Changing the Knowledge Base

There might be cases where we want to reuse defined rules on the different knowledge bases (e.g., on different cities’ underground systems) or extend the knowledge base for some queries (e.g., add additional routes).

We can extend the current knowledge defined in the template using the set_knowledge method.

engine.set_knowledge(additional_knowledge)

We can also set a knowledge that will extend the knowledge base defined in the template but will ignore the knowledge set by the set_knowledge method.
This knowledge base will be considered only for the context of the query.

engine.query(R.some_query, additional_knowledge)

Fuzzy Relational Inference Engine

In the Utilizing Inference Engine section, we introduced a high-level interface for the underlying inference engine that
does only minimal work to provide more performance (e.g., it does not construct neural networks).
To complement this type of inference engine, PyNeuraLogic also provides an evaluation inference engine that, on top of
finding all valid substitutions, runs an evaluation of the provided logic program.

Finding the Shortest Path

As an example of a possible use case of the evaluation inference engine, we will take a look at the example from Utilizing Inference Engine but
with a slight twist - we introduce weights to connections, representing either distance from stations in time or some unit of length.

[image: London Underground with weighted routes]

The encoding is almost the same, except for added values to each connection, that is connected(From, To, Line)[Distance].

from neuralogic.core import Template, R, V, T, Metadata, Aggregation, Activation, ActivationAgg
from neuralogic.inference.evaluation_inference_engine import EvaluationInferenceEngine

template = Template()
template += [
 R.connected(T.bond_street, T.oxford_circus, T.central)[7],
 R.connected(T.oxford_circus, T.tottenham_court_road, T.central)[9],
 R.connected(T.bond_street, T.green_park, T.jubilee)[14],
 R.connected(T.green_park, T.charing_cross, T.jubilee)[21],
 R.connected(T.green_park, T.piccadilly_circus, T.piccadilly)[8],
 R.connected(T.piccadilly_circus, T.leicester_square, T.piccadilly)[6],
 R.connected(T.green_park, T.oxford_circus, T.victoria)[15],
 R.connected(T.oxford_circus, T.piccadilly_circus, T.bakerloo)[12],
 R.connected(T.piccadilly_circus, T.charing_cross, T.bakerloo)[11],
 R.connected(T.tottenham_court_road, T.leicester_square, T.northern)[8],
 R.connected(T.leicester_square, T.charing_cross, T.northern)[7],
]

We have defined two rules called shortest_path. The first rule aggregates connected stations and takes all connections’ maximum value (distance).
The second rule handles instances when stations are not directly connected - at least one station has to be traversed
to get to the goal station. The second rule aggregates all possible instances and finds maximum value while “calling” one of the two rules recursively.

metadata = Metadata(aggregation=Aggregation.MIN, activation=Activation.IDENTITY)

template += (R.shortest(V.X, V.Y) <= R.connected(V.X, V.Y, V.L)) | metadata
template += (R.shortest(V.X, V.Y) <= (R.connected(V.X, V.Z, V.L), R.shortest_path(V.Z, V.Y))) | metadata

Attention

Notice we are appending metadata with aggregation (Min) and activation (Identity) functions.

It is also necessary to set additional activation functions to identity.

template += R.shortest_path / 2 | Metadata(activation=ActivationAgg.MIN + Activation.IDENTITY)
template += R.connected / 3 | Metadata(activation=Activation.IDENTITY)

Evaluating Queries

Now when the template and the knowledge base are ready, we can run queries the same way as for the previously introduced instance of InferenceEngine.
The only difference in the interface for EvaluationInferenceEngine are returned values from the generator -
instead of returning generator of dictionaries containing substitutions, EvaluationInferenceEngine returns a generator of tuple containing the output of evaluation and the dictionary of substitutions.

We can, for example, get the shortest path from the Bond Street station to the Charing Cross station.

engine = EvaluationInferenceEngine(template)

result = engine.q(R.shortest_path(T.bond_street, T.charing_cross)

print(list(result))

[
 (30.0, {})
]

The query computed the distance to be 30 units, which is the actual shortest distance for this input. But this query does not bring any additional value compared to evaluation via evaluators or directly on the model.

To fully utilize the fuzzy relational inference engine, we would also want to get some substitutions. For example, we can get the shortest distances from the Green Park station to all reachable stations.

result = engine.q(R.shortest_path(T.green_park, V.X))

print(list(result))

[
 (19.0, {'X': 'charing_cross'}),
 (14.0, {'X': 'leicester_square'}),
 (8.0, {'X': 'piccadilly_circus'}),
 (15.0, {'X': 'oxford_circus'}),
 (24.0, {'X': 'tottenham_court_road'})
]

This output then tells us that the shortest path to the Charing Cross station from the Green Park station is 19 units long, to the Leicester Square station it is 14 units long, and so on.

Modifiers

Modifiers are optional and alter an relations’ behavior in some way. Currently, there are two following modifiers, which can be chained together:

Hidden Modifier

Sometimes, there are relations in rules that only define the logic structure and are not beneficial to be included in the
computation graph. For those cases, there is a hidden modifier that enforces exactly that -
includes relation for the logic part and excludes relation in the resulting computation graph.

For example, consider the following rule. In some instances, it might be counterproductive to include the edge relations
in the resulting computation graph (e.g., they might not have any edge features), yet those edge relations
cannot be removed as they define a critical part of the logic structure of the program.
Including them in the computation graph will produce a side effect - offsetting the result of relations h.

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation.edge(Var.X, Var.Y))

This issue can be solved by flagging the predicate edge as hidden, ensuring that relations with such a predicate will not be included in the computation graph.

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation.hidden.edge(Var.X, Var.Y))

can be written also as (prepended _ makes predicate hidden)

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation._edge(Var.X, Var.Y))

Special Modifier

The special modifier changes the relation’s behavior depending on its predicate name. We can utilize the following special predicates:

	
	Relation.special.alldiff
	A special relation with the alldiff predicate ensures that its terms (logic variables) are substituted for different values (unique values). It’s also possible to use ... in place of terms, which is substituted for all variables declared in the current rule - no variable declared in the rule can be substituted for the same value simultaneously.

Relation.special.alldiff(Var.X, Var.Y) # Var.X cannot equal to Var.Y

Var.X != Var.Y != Var.Z
Relation.h(Var.X) <= (Relation.b(Var.Y, Var.Z), Relation.special.alldiff(...))

	Relation.special.anypred

	Relation.special.in

	Relation.special.maxcard

	Relation.special.true

	Relation.special.false

	Relation.special.neq

	Relation.special.leq

	Relation.special.geq

	Relation.special.lt

	Relation.special.gt

	Relation.special.eq

Visualization

You can run this page in Jupyter Notebook [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb] [image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb]

PyNeuraLogic offers multiple options for visualization of templates and samples, which can be helpful while investigating
how the high-level rule representations are being translated into computation graphs. The usage of visualization tools
requires having installed Graphviz [https://graphviz.org/download/].

Depending on the parametrization, the drawing methods can output either graph image in bytes, graph image rendered into
a file, or graph image displayed into IPython (Jupyter Notebook).

Additionally, it is also possible to retrieve the generated source of graphs in the DOT format. This format can then be
used to display or further customize and manipulate generated graphs in other libraries.

Visualization of the XOR Example

To showcase the usage of visualization tools, we will use the template and the dataset introduced
in XOR Example [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/IntroductionIntoPyNeuraLogic.ipynb] [image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/IntroductionIntoPyNeuraLogic.ipynb]

Model Rendering

All that is needed to visualize the model - the template with current weights’ values is to call the draw method.

from neuralogic.utils.data import XOR_Vectorized
from neuralogic.core import Settings, Backend

template, dataset = XOR_Vectorized()
model = template.build(Backend.JAVA, Settings())

model.draw()

[image: Template Rendered Graph]

Tip

If you are using evaluators, you can draw the model via the evaluator.draw method.

Tip

You can also visualize the template by calling the template.draw method.

Templates (models) and samples can be drawn into various raster formats (such as PNG or JPEG) or SVG format, which is
considerably faster for larger graphs. To set the format, simply use the img_type parameter.

The drawing can be further parameterized, for example, with the value_detail parameter to display more (or less) decimal
places of all values (there are three levels of detail - 0-2, where 0 has the least number of decimals
and 2 the most number of decimals).

The model above was directly drawn into Jupyter Notebook without any parametrization.
To draw the model into a file, all we have to do is add the filename parameter with a path to the output image, such as:

model.draw(filename="my_image.png")

We can also get raw images bytes by turning off displaying into IPython:

model.draw(draw_ipython=False)

Tip

If you are drawing straight into Jupyter Notebook, you can include additional parameters into drawing functions
to customize the underlying Image [https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.Image] and SVG [https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.Image] objects.

Samples Rendering

Samples can be drawn in the same way and supports the same parametrization as the model drawing.

An example of drawing samples can be seen in the code below, where we render the actual computation graph for the first example (input [0, 0]).

built_dataset = model.build_dataset(dataset)

built_dataset.samples[0].draw()

[image: Sample Rendered Graph]

Getting the DOT Source

To get the DOT source of the model or the sample, all you have to do is call the model_to_dot_source function or
the sample_to_dot_source function, respectively.

from neuralogic.utils.visualize import sample_to_dot_source

dot_source = sample_to_dot_source(built_dataset.samples[0])
print(dot_source)

digraph G {
3 [shape=house, color=black, label="FactNeuron:3:w:<w3> [0,0] : xy
val: [0,0]
grad: [0,0]
dim: [2, 1]
fcn:
"]

2 [shape=ellipse, color=red, label="WeightedRuleNeuron:2:{1,8}xor:-{8,2}xy.
val: [0,0,0,0,0,0,0,0]
grad: [0,0,0,0,0,0,0,0]
dim: [8, 1]
fcn: Tanh
"]
2 -> 3 [label="1:w1:[8, 2]:[
[0.76,0.88],
[-0.45,-0.74],
[-0.71,-0.95],
[0.09,0.93],
[-0.79,0.25],
[-0.18,0.55],
[0.98,-0.03],
[0.49,0.47]
]"]

0 [shape=ellipse, color=blue, label="WeightedAtomNeuron:0:xor
val: 0
grad: 0
dim: []
fcn: Tanh
"]
0 -> 2 [label="0:w0:[1, 8]:[0.46,-0.52,0.27,0.1,0.2,-0.33,-0.23,0.97]"]

0 [shape = tripleoctagon]
}

Recursive XOR Generalization

You can run this page in Jupyter Notebook [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb] [image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb]

In one of our introductory examples [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/IntroductionIntoPyNeuraLogic.ipynb]
we have showcased how to learn the XOR operation for two inputs. In this example, we will generalize the learning of
the XOR operation to N inputs while making the use of recursion.

We will define a recursive template, train it on the classic XOR (two inputs) and show an inference of inputs of different lengths.

The template will essentially evaluate \(xor_n = xor(val_n, xor_{n-1})\) with shared weights across all depths.

from neuralogic.nn import get_evaluator
from neuralogic.core import Settings, R, V, Template, Activation
from neuralogic.dataset import Dataset

Before we define rules for the actual learning, we introduce helper relations (facts) R._next.
Those rules serve for the definition of the sequence of integers, that is \(1, 2, ..., N\)
(\(N\) is defined by max_number_of_vars). We have to do that because later on, we will utilize this sequence for
the recursion. Integers in PyNeuraLogic are independent entities with no extra meaning or context.

max_number_of_vars = 5

template = Template()
template += (R._next(i, i + 1) for i in range(max_number_of_vars))

We then define the base case of the recursion, that is, to get the value of \(xor\) of length \(1\) (index \(0\))
return the value of the first (index \(0\)) element.

template += R.xor_at(0) <= R.val_at(0)

Now when we have the base case ready, we introduce the recursive “calls”. The following rule can be interpreted as
“To calculate the \(xor\) of length \(N\) (V.Y), calculate the xor of length \(N - 1\) (V.X)
and pipe the result together with the element at index \(N\) (R.val_at(V.Y)) into \(xor\)”.

We also assigned three unique vector learnable parameters and named them. Naming is entirely optional and is here only to show the mapping later.

template += R.xor_at(V.Y)["a": 1, 8] <= (R.val_at(V.Y)["b": 8, 1], R.xor_at(V.X)["c": 8, 1], R._next(V.X, V.Y))

And that is everything you need to define a template for recursive generalization of XOR!

The recursion, together with weights mapping, can be viewed in the template graph by drawing it.

template.draw()

[image: Recursive Template]
The definition of the training data set is straightforward; we train the model on inputs of the length of two.
That is, we encode \(xor(0, 0) = 0\), \(xor(1, 0) = 1\), and so on as the training set.

examples = [
 [R.val_at(0)[0], R.val_at(1)[0]], # input: 0, 0
 [R.val_at(0)[0], R.val_at(1)[1]], # input: 0, 1
 [R.val_at(0)[1], R.val_at(1)[0]], # input: 1, 0
 [R.val_at(0)[1], R.val_at(1)[1]], # input: 1, 1
]

queries = [# outputs: 0, 1, 1, and 0
 R.xor_at(1)[0], R.xor_at(1)[1], R.xor_at(1)[1], R.xor_at(1)[0],
]

train_dataset = Dataset(examples, queries)

settings = Settings(
 epochs=5000, rule_activation=Activation.TANH, relation_activation=Activation.IDENTITY, iso_value_compression=False
)

evaluator = get_evaluator(template, settings)
built_dataset = evaluator.build_dataset(train_dataset)

Note

Notice we turned off compression, so the recursion is clearly visible in the visual representation later on.

Once we build the training dataset, we can visualize each sample. For example, the \(xor(0, 0)\) sample will be represented by the following computation graph.

built_dataset.samples[0].draw()

[image: Recursive Template]
evaluator.train(built_dataset, generator=False)

We train the model on the training dataset via the evaluator and then prepare a test dataset.
We can put any input of maximum length of N (max_number_of_vars) into the dataset. For this example, we chose
\(xor(0, 0, 1)\) and \(xor(1, 0, 1, 0)\). Feel free to try out other lengths and combinations!

test_examples = [
 [R.val_at(0)[0], R.val_at(1)[0], R.val_at(2)[1]],
 [R.val_at(0)[1], R.val_at(1)[0], R.val_at(2)[1], R.val_at(3)[0]],
]

test_queries = [
 R.xor_at(2), R.xor_at(3)
]

test_dataset = Dataset(test_examples, test_queries)
built_test_dataset = evaluator.build_dataset(test_dataset)

When we visualize our test samples and compare them, we can clearly see how the template is recursively unrolled into
computation graphs (trees) with shared weights across depths.

built_test_dataset.samples[0].draw()

[image: Recursive sample for the input xor(0, 0, 1)]
built_test_dataset.samples[1].draw()

[image: Recursive sample for the input xor(1, 0, 1, 0)]
Running inference on our test dataset yields correct results, that is \(xor(0, 0, 1) = 1\) and \(xor(1, 0, 1, 0) = 0\).

for _, result in evaluator.test(built_test_dataset):
 print(result) # 1, 0

Java Settings, Logging and Debugging

PyNeuraLogic, at its core, utilizes procedures (such as grounding) running on a Java Virtual Machine (JVM). JVM itself
offers plentiful options to set, such as memory limitations, garbage collectors settings, and more.

This section will go through interfaces that allow you to pass your own JVM settings.
We will also look into JVM logging and JVM debugging.

JVM Settings

Important

Customizing JVM settings and JVM path is applicable only before a JVM is started. If you want to do some
customizations, do them before working with PyNeuraLogic (building model/building samples, etc.)

By default, PyNeuraLogic uses JVM found on your PATH. If you want to use a different JVM, you can do that by calling
the neuralogic.set_jvm_path function, such as:

import neuralogic

neuralogic.set_jvm_path("/some/path/my_jvm/")

You can also make some adjustments to JVM settings via the neuralogic.set_jvm_options function.
By default, two options are passed into the JVM - "-Xms1g", which sets the minimum amount of heap memory size
to 1 GB, and "-Xmx64g", which sets the maximum amount of heap memory size to 64 GB.

This function overrides already set options, so if you want to keep defaults or previously set options,you will have
to specify them again. For example, you can inspect the garbage collector with customizing settings such as:

import neuralogic

neuralogic.set_jvm_options(["-Xms1g", "-Xmx64g", "-XX:+PrintGCDetails"])

Java Logging

Looking into the Java logs can be valuable practice to get better insight into what is going on in the background.
It offers a lot of information about all steps, such as the grounding process. This info is also practical
when asking for help in discussion/issues.

You can add a logging handler anytime you want with any level by calling the add_handler function.
The first argument can be any object that implements a write(message: str)
method (e.g., file handlers, sys.stdout, etc.).

import sys
from neuralogic.logging import add_handler, Formatter, Level

add_handler(sys.stdout, Level.FINE, Formatter.COLOR)

If you decide you no longer want to subscribe to loggers, you can remove all logging handlers by calling
the clear_handlers function.

from neuralogic.logging import clear_handlers

clear_handlers()

Java Debugging

Important

To run PyNeuraLogic in debug mode, you have to run the debug mode before a JVM is started -
therefore, run the debug mode before working with PyNeuraLogic (building model/building samples, etc.)

There is a prepared interface to run the JVM in the debug mode, which allows to attach a remote debugger on the JVM and
then use breakpoints on the NeuraLogic [https://github.com/GustikS/NeuraLogic] project, as usual. You can enable
the debug mode by calling the neuralogic.initialize function with the argument debug_mode=True.

import neuralogic

neuralogic.initialize(debug_mode=True)

>>> Listening for transport dt_socket at address: 12999

Once you get the message above, the execution of the python program will wait (by default) for you to connect your
remote debugger to the port (by default, 12999). Via other arguments of the initialize function,
it is possible to specify further things like debugging port, etc.

Once the remote debugger is attached, the execution of the Python program will continue until the execution hits a breakpoint.

🔬 Examples

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb] Molecular GNNs [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb] Simple XOR example [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb] Recursive XOR Generalization [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb] Visualization [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb] Pattern Matching [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb] Distinguishing k-regular graphs [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb]

	[image: Open in Colab] [https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb] Distinguishing non-regular graphs [https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb]

⏱️ Benchmarks

Here we compare the speed of some popular GNN models encoded in PyNeuraLogic against some of the most popular GNN frameworks in their latest versions, namely PyTorch Geometric (PyG) (2.0.2), Deep Graph Library (DGL) (0.6.1), and Spektral (1.0.6).

The benchmarks report comparison of the average training time per epoch of three different architectures
- GCN (two GCNConv layers), GraphSAGE (two GraphSAGEConv layers), and GIN (five GINConv layers).

Datasets are picked from the common TUDataset Benchmark Data Sets and are loaded into PyNeuraLogic, DGL, and PyG via PyG’s Dataset loader.
Spektral benchmark uses Spektral’s Dataset loader.

We compare the frameworks in a binary graph classification task with only node’s features. This is merely for the sake of
simple reusability of the introduced architectures over the frameworks. Statistics of each dataset can be seen down below.

Due to its declarative nature, PyNeuraLogic has to transform each dataset into a logic form and then into a computation graph.
The time spent on this preprocessing task is labeled as “Dataset Build Time”. Note that this transformation happens only once before
the training.

MUTAG

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.1238s

	0.1547s

	0.2491s

	Deep Graph Library

	0.1287s

	0.1795s

	0.5214s

	PyTorch Geometric

	0.0897s

	0.1099s

	0.3399s

	PyNeuraLogic

	0.0083s

	0.0119s

	0.0393s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	1.4265s

	1.9372s

	2.3662s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	188

	~17.9

	~19.7

	7

NCI1

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	3.0152s

	3.1773s

	5.1924s

	Deep Graph Library

	3.1044s

	4.3426s

	11.3512s

	PyTorch Geometric

	1.9226s

	2.6211s

	7.0598s

	PyNeuraLogic

	0.2396s

	0.3461s

	1.5037s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	24.8405s

	25.2125s

	57.4115s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	4110

	~29.8

	~32.3

	37

PROTEINS

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.7221s

	1.0153s

	1.4591s

	Deep Graph Library

	0.7859s

	1.1963s

	3.1576s

	PyTorch Geometric

	0.5047s

	0.6455s

	1.9786s

	PyNeuraLogic

	0.0741s

	0.1111s

	0.5524s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	9.9873s

	10.0125s

	24.2591s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	1113

	~39.0

	~72.8

	3

BZR

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.2730s

	0.3238s

	0.5144s

	Deep Graph Library

	0.3035s

	0.4288s

	1.1171s

	PyTorch Geometric

	0.1847s

	0.2464s

	0.7232s

	PyNeuraLogic

	0.0293s

	0.0469s

	0.1552s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	3.8219s

	3.9852s

	7.0831s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	405

	~35.7

	~38.3

	53

COX2

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.3411s

	0.3705s

	0.5975s

	Deep Graph Library

	0.3513s

	0.5124s

	1.2988s

	PyTorch Geometric

	0.2082s

	0.2857s

	0.8086s

	PyNeuraLogic

	0.0321s

	0.0505s

	0.1754s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	4.2805s

	4.5738s

	8.6356s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	467

	~41.2

	~43.4

	35

DHFR

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.5578s

	0.6058s

	0.9708s

	Deep Graph Library

	0.6063s

	0.8010s

	2.1136s

	PyTorch Geometric

	0.3388s

	0.4588s

	1.3178s

	PyNeuraLogic

	0.0572s

	0.0879s

	0.3168s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	7.3361s

	7.3635s

	15.0887s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	467

	~42.4

	~44.5

	53

KKI

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.0565s

	0.0797s

	0.1200s

	Deep Graph Library

	0.0611s

	0.0887s

	0.2292s

	PyTorch Geometric

	0.0370s

	0.0535s

	0.1480s

	PyNeuraLogic

	0.0262s

	0.0321s

	0.0529s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	1.7563s

	2.0459s

	2.6008s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	83

	~26.9

	~48.4

	190

Peking_1

Average Time Per Epoch
[image: Average Time Per Epoch]

	
	GCN

	GraphSAGE

	GIN

	Spektral

	0.0597s

	0.0851s

	0.1244s

	Deep Graph Library

	0.0654s

	0.0923s

	0.2335s

	PyTorch Geometric

	0.0404s

	0.0608s

	0.1547s

	PyNeuraLogic

	0.0371s

	0.0469s

	0.0778s

Dataset Build Time

	
	GCN

	GraphSAGE

	GIN

	PyNeuraLogic

	2.3414s

	2.2352s

	3.3951s

Dataset Statistics

	Num. of Graphs

	Avg. num. of nodes

	Avg. num. of edges

	Num. node of features

	85

	~39.3

	~77.3

	190

Hypergraph Neural Networks

A hypergraph is a generalization of a simple graph \(G = (V, E)\), where \(V\) is a set of vertices
and \(E\) is a set of edges (hyperedges) connecting an arbitrary number of vertices.

Representation of hyperedges

When we encode input data (graph) in the form of logic data format (i.e., ground relations),
we can represent regular edges, for example, as Relation.edge(1, 2).

[image: Hypergraph]

This form of representation can be simply extended to express hyperedges by adding terms for each connected
vertex by the hyperedge. For example, graph \(G = (V, E)\), where \(V = \{1, 2, 3, 4, 5, 6\}\)
and \(E = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 4, 6\}\}\) can be represented as:

Relation.edge(1, 2),
Relation.edge(3, 4, 5),
Relation.edge(1, 2, 4, 6),

Propagation on hyperedges

The propagation through standard edges can be similarly extended to support propagation through hyperedges.

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation.edge(Var.Y, Var.X))

The propagation through standard edges above, where Relation.feature might represent vertex features,
and Relation.edge represents an edge, might be extended to support hyperedges (for hyperedge connecting three
vertices) as follows:

Relation.h(Var.X) <= (
 Relation.feature(Var.Y),
 Relation.feature(Var.Z),
 Relation.edge(Var.Y, Var.Z, Var.X),
)

Heterophily Settings

Regular GNN models usually consider homophily in the graph - frequently,
nodes of similar classes are connected with each other. This setting does not capture multiple problems adequately,
where there is a heterophily amongst connected nodes - mainly nodes of different classes are connected, resulting in
low accuracies of classifications.

There have been proposed new methods and models to properly capture problems of such settings, such as
CPGNN (“Graph Neural Networks with Heterophily” [https://arxiv.org/abs/2009.13566])
or H2GCN (“Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs” [https://arxiv.org/abs/2006.11468]).

We take into consideration the latter one - the H2GCN model, which is specifically built to deal with heterophily
graphs and implement three key design concepts. All of those concepts can be easily represented in PyNeuraLogic
with a few rules. As in other cases, the rule representation can be further manipulated and tweaked without the need of
reimplementing the whole model or digging into an already implemented black box.

1. The Central Node Embedding Separation

The first key design is separating the embedding of the central node from the embedding of neighbor nodes. This behavior
can be achieved just with two rules, that can be written in the following form:

Relation.layer_1(Var.X) <= (Relation.layer_0(Var.Y), Relation.edge(Var.Y, Var.X)),
Relation.layer_1(Var.X) <= Relation.layer_0(Var.X)

The first rule aggregates all features of neighbors of the central node, and then we combine the aggregated value with
the value of the second rule, which embeds the features of the central node.

2. Higher-Order Neighborhoods Embedding

The second concept is to consider not only the direct neighbors but also higher-order neighbors in the computation of
the central node’s representation, such as second-order neighbors (neighbors of neighbors), as can be represented as
the following rule:

Relation.layer_1(Var.X) <= (
 Relation.layer_0(Var.Z),
 Relation.edge(Var.Y, Var.X),
 Relation.edge(Var.Z, Var.Y),
 Relation.special.alldiff(...),
)

See also

For more information about the special predicate alldiff, see Special Modifier.

3. Combination of Intermediate Representations

The last design concept used in the H2GCN model is the combination of intermediate representation.
This can also be easily achieved in PyNeuraLogic just by one rule, where we combine all representations of
layers, such as:

Relation.layer_final(Var.X) <= (
 Relation.layer_0(Var.X),
 Relation.layer_1(Var.X),
 Relation.layer_2(Var.X),
 Relation.layer_n(Var.X),
)

neuralogic package

Subpackages

	neuralogic.core package
	Subpackages
	neuralogic.core.builder package
	Submodules

	neuralogic.core.builder.builder module

	neuralogic.core.builder.components module

	neuralogic.core.builder.dataset_builder module

	Module contents

	neuralogic.core.constructs package
	Submodules

	neuralogic.core.constructs.factories module

	neuralogic.core.constructs.java_objects module

	neuralogic.core.constructs.metadata module

	neuralogic.core.constructs.predicate module

	neuralogic.core.constructs.rule module

	Module contents

	neuralogic.core.settings package
	Submodules

	neuralogic.core.settings.settings_proxy module

	Module contents

	Submodules

	neuralogic.core.enums module

	neuralogic.core.sources module

	neuralogic.core.template module

	Module contents

	neuralogic.dataset package

	neuralogic.nn package
	Subpackages
	neuralogic.nn.evaluator package
	Submodules

	neuralogic.nn.evaluator.dynet module

	neuralogic.nn.evaluator.java module

	neuralogic.nn.evaluator.torch module

	Module contents

	Submodules

	neuralogic.nn.init module

	neuralogic.nn.base module

	neuralogic.nn.dynet module

	neuralogic.nn.java module

	neuralogic.nn.torch module

	Module contents

	neuralogic.utils package
	Subpackages
	neuralogic.utils.data package
	Module contents

	neuralogic.utils.visualize package
	Module contents

	Module contents

Submodules

neuralogic.logging module

	
class Formatter(value)

	Bases: Enum

Logged information formatters

	
COLOR = 'color'

	

	
NORMAL = 'normal'

	

	
class Level(value)

	Bases: Enum

Logging level

	
ALL = 'ALL'

	

	
CONFIG = 'CONFIG'

	

	
FINE = 'FINE'

	

	
FINER = 'FINER'

	

	
FINEST = 'FINEST'

	

	
INFO = 'INFO'

	

	
OFF = 'OFF'

	

	
SEVERE = 'SEVERE'

	

	
WARNING = 'WARNING'

	

	
class TextIOWrapper(wrapped_text_io)

	Bases: object

	
write(string)

	

	
add_handler(output, level: Level = Level.FINER, formatter: Formatter = Formatter.COLOR)

	Add logger handler for an insight into the java backend

	Parameters

	
	output – File-like object (has write(text: str) method)

	level – The logging level

	formatter – The log formatter

	
clear_handlers()

	Clear all handlers

Module contents

	
initial_seed() → int

	Returns the initial random seed for a random number generator used in the backend

	
initialize(debug_mode: bool = False, debug_port: int = 12999, is_debug_server: bool = True, debug_suspend: bool = True)

	

	
is_initialized() → bool

	

	
manual_seed(seed: int)

	Sets the seed for a random number generator used in the backend to the passed seed.

	Parameters

	seed –

	
seed() → int

	Sets the seed for a random number generator used in the backend to a random seed and returns the seed.

	
set_jvm_options(options: List[str]) → None

	Set the jvm options - by default [“-Xms1g”, “-Xmx64g”],

	
set_jvm_path(path: Optional[str]) → None

	

neuralogic.core package

Subpackages

	neuralogic.core.builder package
	Submodules

	neuralogic.core.builder.builder module

	neuralogic.core.builder.components module

	neuralogic.core.builder.dataset_builder module

	Module contents

	neuralogic.core.constructs package
	Submodules

	neuralogic.core.constructs.factories module

	neuralogic.core.constructs.java_objects module

	neuralogic.core.constructs.metadata module

	neuralogic.core.constructs.predicate module

	neuralogic.core.constructs.rule module

	Module contents

	neuralogic.core.settings package
	Submodules

	neuralogic.core.settings.settings_proxy module

	Module contents

Submodules

neuralogic.core.enums module

	
class Backend(value)

	Bases: Enum

An enumeration.

	
DYNET = 'dynet'

	

	
JAVA = 'java'

	

	
TORCH = 'torch'

	

	
class Optimizer(value)

	Bases: str, Enum

An enumeration.

	
ADAM = 'ADAM'

	

	
SGD = 'SGD'

	

neuralogic.core.sources module

	
class Sources(sources)

	Bases: object

	
static from_args(args: List[str], settings: SettingsProxy) → Sources

	

	
static from_settings(settings: SettingsProxy) → Sources

	

	
to_json() → str

	

neuralogic.core.template module

	
class Template(*, template_file: Optional[str] = None)

	Bases: object

	
add_hook(relation: Union[BaseRelation, str], callback: Callable[[Any], None]) → None

	Hooks the callable to be called with the relation’s value as an argument when the value of
the relation is being calculated.

	Parameters

	
	relation –

	callback –

	Returns

	

	
add_module(module: Module)

	Expands the module into rules and adds them into the template

	Parameters

	module –

	Returns

	

	
add_rule(rule) → None

	Adds one rule to the template

	Parameters

	rule –

	Returns

	

	
add_rules(rules: List)

	Adds multiple rules to the template

	Parameters

	rules –

	Returns

	

	
build(settings: Settings, backend: Backend = Backend.JAVA)

	

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
get_parsed_template(settings: SettingsProxy, java_factory: JavaFactory)

	

	
remove_duplicates()

	Remove duplicates from the template

	
remove_hook(relation: Union[BaseRelation, str], callback)

	Removes the callable from the relation’s hooks

	Parameters

	
	relation –

	callback –

	Returns

	

Module contents

neuralogic.core.builder package

Submodules

neuralogic.core.builder.builder module

	
class Builder(settings: SettingsProxy)

	Bases: object

	
static build(samples)

	

	
build_model(parsed_template, backend: Backend, settings: SettingsProxy)

	

	
build_template_from_file(settings: SettingsProxy, filename: str)

	

	
from_logic_samples(parsed_template, logic_samples, backend: Backend)

	

	
from_sources(parsed_template, sources: Sources, backend: Backend)

	

	
static get_builders(settings: SettingsProxy)

	

	
stream_to_list(stream) → List

	

neuralogic.core.builder.components module

	
class BuiltDataset(samples)

	Bases: object

BuiltDataset represents an already built dataset - that is, a dataset that has been grounded and neuralized.

	
class Neuron(neuron: Dict[str, Any], index)

	Bases: object

	
static parse_hook_name(name: str)

	

	
class RawSample(sample)

	Bases: object

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
java_sample

	

	
class Sample(sample, java_sample)

	Bases: RawSample

	
static deserialize_network(network)

	

	
id

	

	
java_sample

	

	
neurons

	

	
output_neuron

	

	
target

	

	
class Weight(weight)

	Bases: object

	
static get_unit_weight() → Weight

	

neuralogic.core.builder.dataset_builder module

	
class DatasetBuilder(parsed_template, java_factory: JavaFactory)

	Bases: object

	
build_dataset(dataset: BaseDataset, backend: Backend, settings: SettingsProxy, file_mode: bool = False) → BuiltDataset

	Builds the dataset (does grounding and neuralization) for this template instance and the backend

	Parameters

	
	dataset –

	backend –

	settings –

	file_mode –

	Returns

	

	
build_examples(examples, examples_builder)

	

	
build_queries(queries, query_builder)

	

	
static merge_queries_with_examples(queries, examples, one_query_per_example, example_queries=True)

	

Module contents

neuralogic.core.constructs package

Submodules

neuralogic.core.constructs.factories module

	
class AtomFactory

	Bases: object

	
class Predicate(hidden=False, special=False)

	Bases: object

	
static get_predicate(name, arity, hidden, special) → Predicate

	

	
property hidden: Predicate

	

	
property special: Predicate

	

	
get(name: str) → BaseRelation

	

	
class ConstantFactory

	Bases: object

	
class VariableFactory

	Bases: object

neuralogic.core.constructs.java_objects module

	
class JavaFactory(settings: Optional[SettingsProxy] = None)

	Bases: object

	
atom_to_clause(atom)

	

	
get_conjunction(relations, variable_factory, default_weight=None, is_example=False)

	

	
get_generic_relation(relation_class, relation, variable_factory, default_weight=None, is_example=False)

	

	
get_lifted_example(example)

	

	
get_metadata(metadata, metadata_class)

	

	
get_new_weight_factory()

	

	
get_predicate(predicate)

	

	
get_predicate_metadata_pair(predicate_metadata)

	

	
get_query(query)

	

	
get_relation(relation, variable_factory, is_example=False)

	

	
get_rule(rule)

	

	
get_term(term, variable_factory)

	

	
get_value(weight)

	

	
get_valued_fact(relation, variable_factory, default_weight=None, is_example=False)

	

	
get_variable_factory()

	

	
get_weight(weight, name, fixed)

	

neuralogic.core.constructs.metadata module

	
class Metadata(offset=None, learnable: Optional[bool] = None, activation: Optional[Union[str, Activation, ActivationAgg]] = None, aggregation: Optional[Union[str, Aggregation]] = None, duplicit_grounding: bool = False)

	Bases: object

	
activation

	

	
aggregation

	

	
duplicit_grounding

	

	
static from_iterable(iterable: Iterable) → Metadata

	

	
learnable

	

	
offset

	

neuralogic.core.constructs.predicate module

	
class Predicate(name, arity, hidden=False, special=False)

	Bases: object

	
arity

	

	
hidden

	

	
name

	

	
set_arity(arity)

	

	
special

	

	
to_str()

	

	
class PredicateMetadata(predicate: Predicate, metadata: Metadata)

	Bases: object

	
metadata

	

	
predicate

	

neuralogic.core.constructs.rule module

	
class Rule(head, body)

	Bases: object

	
body

	

	
head

	

	
is_ellipsis_templated() → bool

	

	
metadata: Optional[Metadata]

	

Module contents

neuralogic.core.settings package

Submodules

neuralogic.core.settings.settings_proxy module

	
class SettingsProxy(*, optimizer: Optimizer, learning_rate: float, epochs: int, error_function: ErrorFunction, initializer: Initializer, rule_activation: Activation, relation_activation: Activation, iso_value_compression: bool, chain_pruning: bool)

	Bases: object

	
property chain_pruning: bool

	

	
property debug_exporting: bool

	

	
property default_fact_value: float

	

	
property epochs: int

	

	
property error_function

	

	
get_activation_function(activation: Activation)

	

	
property initializer

	

	
property initializer_const

	

	
property initializer_uniform_scale

	

	
property iso_value_compression: bool

	

	
property learning_rate: float

	

	
property optimizer

	

	
property relation_activation: Activation

	

	
property rule_activation: Activation

	

	
to_json() → str

	

Module contents

	
class Settings(*, optimizer: ~neuralogic.core.enums.Optimizer = Optimizer.ADAM, learning_rate: ~typing.Optional[float] = None, epochs: int = 3000, error_function: ~neuralogic.nn.loss.ErrorFunction = <neuralogic.nn.loss.MSE object>, initializer: ~neuralogic.nn.init.Initializer = <neuralogic.nn.init.Uniform object>, rule_activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, relation_activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, iso_value_compression: bool = True, chain_pruning: bool = True)

	Bases: object

	
property chain_pruning: bool

	

	
create_disconnected_proxy() → SettingsProxy

	

	
create_proxy() → SettingsProxy

	

	
property epochs: int

	

	
property error_function: ErrorFunction

	

	
property initializer: Initializer

	

	
property iso_value_compression: bool

	

	
property learning_rate: float

	

	
property optimizer: Optimizer

	

	
property relation_activation: Activation

	

	
property rule_activation: Activation

	

neuralogic.dataset package

Available dataset formats

	Dataset (Logic format)

	FileDataset

	TensorDataset

	
class Dataset(examples: Optional[List[List[Union[BaseRelation, WeightedRelation, Rule]]]] = None, queries: Optional[List[Union[List[Union[BaseRelation, WeightedRelation, Rule]], BaseRelation, WeightedRelation, Rule]]] = None)

	Dataset encapsulating (learning) samples in the form of logic format, allowing users to fully take advantage of the
PyNeuraLogic library.

One learning sample consists of:
* Example: A list of logic facts and rules representing some instance (e.g., a graph)
* Query: A logic fact to mark the output of a model and optionally target label.

Examples and queries in the dataset can be paired in the following ways:

	N:N - Dataset contains N examples and N queries. They will be paired by their index.

dataset.add_example(first_example)
dataset.add_example(second_example)

dataset.add_query(first_query)
dataset.add_query(second_query)

Learning samples: [first_example, first_query], [second_example, second_query]

	1:N - Dataset contains 1 example and N queries. All queries will be run on the example.

dataset.add_example(example)

dataset.add_query(first_query)
dataset.add_query(second_query)

Learning samples: [example, first_query], [example, second_query]

	N:M - Dataset contains N examples and M queries (N <= M). It pairs queries similarly to the N: N case but also
allows running multiple queries on a specific example (by inserting a list of queries instead of one query).

dataset.add_example(first_example)
dataset.add_example(second_example)

dataset.add_query([first_query_0, first_query_1])
dataset.add_query(second_query)

Learning samples:
[first_example, first_query_0], [first_example, first_query_1], [second_example, second_query]

	Parameters

	
	examples (Optional[List]) – List of examples. Default: None

	queries (Optional[List]) – List of queries. Default: None

	
class FileDataset(examples_file: Optional[str] = None, queries_file: Optional[str] = None)

	FileDataset represents samples stored in files in the NeuraLogic [https://github.com/GustikS/NeuraLogic]
(logic) format.

	Parameters

	
	examples_file (Optional[str]) – Path to the examples file. Default: None

	queries_file (Optional[str]) – Path to the queries file. Default: None

	
class Data(x: Sequence, edge_index: Sequence, y: Union[Sequence, float, int], edge_attr: Optional[Sequence] = None, y_mask: Optional[Sequence] = None)

	The Data instance stores information about one specific graph instance.

Example

For example, the directed graph \(G = (V, E)\), where \(E = \{(0, 1), (1, 2), (2, 0)\}\),
node features \(X = \{[0], [1], [0]\}\) and target nodes’ labels
\(Y = \{0, 1, 0\}\) would be represented as:

data = Data(
 x=[[0], [1], [0]],
 edge_index=[
 [0, 1, 2],
 [1, 2, 0],
],
 y=[0, 1, 0],
)

	Parameters

	
	x (Sequence) – Sequence of node features.

	edge_index (Sequence) – Edges represented via a graph connectivity format - matrix [[...src], [...dst]].

	y (Union[Sequence, float, int]) – Sequence of labels of all nodes or one graph label.

	edge_attr (Optional[Sequence]) – Optional sequence of edge features. Default: None

	y_mask (Optional[Sequence]) – Optional sequence of node ids to generate queries for. Default: None (all nodes)

	
static from_pyg(data) → List[Data]

	Converts a PyTorch Geometric Data instance into a list of PyNeuraLogic Data instances.
The conversion supports train_mask, test_mask and val_mask attributes -
for each mask the conversion yields a new data instance.

	Parameters

	data – The PyTorch Geometric Data instance

	Returns

	The list of PyNeuraLogic Data instances

	
class TensorDataset(data: List[Data], one_hot_encode_labels: bool = False, one_hot_decode_features: bool = False, number_of_classes: int = 1, feature_name: str = 'node_feature', edge_name: str = 'edge', output_name: str = 'predict')

	The TensorDataset holds a list of Data instances -
a list of graphs represented in a tensor format.

	Parameters

	
	data (List[Data]) – List of data (graph) instances.

	one_hot_encode_labels (bool) – Turn numerical labels into one hot encoded vectors - e.g., label 2 would be turned
into a vector [0, 0, 1, .., 0] of length number_of_classes.
Default: False

	one_hot_decode_features (bool = False) – Turn one hot encoded feature vectors into a scalar - e.g., feature vector [0, 0, 1] would be turned into a
scalar feature 2.
Default: False

	number_of_classes (int) – Specifies the number of classes for converting numerical labels to one hot encoded vectors.
Default: 1

	feature_name (str) – Specify the node feature predicate name used for converting into the logic format.
Default: node_feature

	edge_name (str) – Specify the edge predicate name used for converting into the logic format.
Default: edge

	output_name (str) – Specify the output predicate name used for converting into the logic format.
Default: predict

neuralogic.nn package

Subpackages

	neuralogic.nn.evaluator package
	Submodules

	neuralogic.nn.evaluator.dynet module

	neuralogic.nn.evaluator.java module

	neuralogic.nn.evaluator.torch module

	Module contents

Submodules

neuralogic.nn.init module

	
class Constant(value: float = 0.1)

	Bases: Initializer

Initializes learnable parameters with the value.

	Parameters

	value (float) – Value to fill weights with. Default: 0.1

	
get_settings() → Dict[str, Any]

	

	
class Glorot(scale: float = 2)

	Bases: Initializer

Initializes learnable parameters with samples from a uniform distribution (from the interval
[-scale / 2, scale / 2]) using the Glorot method.

	Parameters

	scale (float) – Scale of a uniform distribution interval [-scale / 2, scale / 2]. Default: 2

	
get_settings() → Dict[str, Any]

	

	
is_simple() → bool

	

	
class He(scale: float = 2)

	Bases: Initializer

Initializes learnable parameters with samples from a uniform distribution (from the interval
[-scale / 2, scale / 2]) using the He method.

	Parameters

	scale (float) – Scale of a uniform distribution interval [-scale / 2, scale / 2]. Default: 2

	
get_settings() → Dict[str, Any]

	

	
is_simple() → bool

	

	
class Initializer

	Bases: object

	
get_settings() → Dict[str, Any]

	

	
is_simple() → bool

	

	
class InitializerNames

	Bases: object

	
CONSTANT = 'CONSTANT'

	

	
GLOROT = 'GLOROT'

	

	
HE = 'HE'

	

	
LONGTAIL = 'LONGTAIL'

	

	
NORMAL = 'NORMAL'

	

	
UNIFORM = 'UNIFORM'

	

	
class Longtail

	Bases: Initializer

Initializes learnable parameters with random samples from a long tail distribution

	
class Normal

	Bases: Initializer

Initializes learnable parameters with random samples from a normal (Gaussian) distribution

	
class Uniform(scale: float = 2)

	Bases: Initializer

Initializes learnable parameters with random uniformly distributed samples from the interval
[-scale / 2, scale / 2].

	Parameters

	scale (float) – Scale of the distribution interval [-scale / 2, scale / 2]. Default: 2

	
get_settings() → Dict[str, Any]

	

neuralogic.nn.base module

	
class AbstractEvaluator(backend: Backend, template: Template, settings: Settings)

	Bases: object

	
build_dataset(dataset: Union[BaseDataset, BuiltDataset], file_mode: bool = False)

	

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
load_state_dict(state_dict: Dict)

	

	
property model: AbstractNeuraLogic

	

	
parameters() → Dict

	

	
reset_parameters()

	

	
set_dataset(dataset: Union[BaseDataset, BuiltDataset])

	

	
state_dict() → Dict

	

	
test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
class AbstractNeuraLogic(backend: Backend, dataset_builder: DatasetBuilder, template: Template, settings: SettingsProxy)

	Bases: object

	
build_dataset(dataset: Union[BaseDataset, BuiltDataset], file_mode: bool = False)

	

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
load_state_dict(state_dict: Dict)

	

	
parameters() → Dict

	

	
run_hook(hook: str, value)

	

	
set_hooks(hooks)

	

	
state_dict() → Dict

	

	
sync_template(state_dict: Optional[Dict] = None, weights=None)

	

neuralogic.nn.dynet module

neuralogic.nn.java module

	
class NeuraLogic(model, dataset_builder, template, settings: SettingsProxy)

	Bases: AbstractNeuraLogic

	
load_state_dict(state_dict: Dict)

	

	
reset_parameters()

	

	
set_training_samples(samples)

	

	
state_dict() → Dict

	

	
test()

	

	
train()

	

neuralogic.nn.torch module

	
class NeuraLogic(model: List[Weight], dataset_builder, template, settings: Optional[SettingsProxy] = None)

	Bases: AbstractNeuraLogic

	
activations = {'Average': <built-in method mean of type object>, 'Maximum': <built-in method max of type object>, 'Minimum': <built-in method min of type object>, 'ReLu': <built-in method relu of type object>, 'Sigmoid': <built-in method sigmoid of type object>, 'Sum': <built-in method sum of type object>, 'Tanh': <built-in method tanh of type object>}

	

	
build_sample(sample: Sample)

	

	
initializers = {'CONSTANT': <function NeuraLogic.<lambda>>, 'GLOROT': <function NeuraLogic.<lambda>>, 'HE': <function NeuraLogic.<lambda>>, 'LONGTAIL': <function longtail>, 'NORMAL': <function NeuraLogic.<lambda>>, 'UNIFORM': <function NeuraLogic.<lambda>>}

	

	
load_state_dict(state_dict: Dict)

	

	
process_neuron_inputs(neuron: Neuron, neurons: List[Tensor], weights: ParameterList) → Tuple[List[Union[Tensor, int, float]], List[Tensor], List[Tensor]]

	

	
reset_parameters()

	

	
state_dict() → Dict

	

	
static to_tensor_value(value) → Tensor

	

	
to_torch_expression(neuron: Neuron, neurons: List[Tensor], weights: ParameterList) → Tensor

	

	
longtail(tensor: Tensor, _: SettingsProxy)

	

Module contents

	
get_evaluator(template, settings=None, backend: Backend = Backend.JAVA)

	

	
get_neuralogic_layer(backend: Backend = Backend.JAVA)

	

neuralogic.nn.evaluator package

Submodules

neuralogic.nn.evaluator.dynet module

neuralogic.nn.evaluator.java module

	
class JavaEvaluator(problem: Optional[Template], settings: Settings)

	Bases: AbstractEvaluator

	
load_state_dict(state_dict: Dict)

	

	
reset_dataset(dataset)

	

	
set_dataset(dataset: Union[BaseDataset, BuiltDataset])

	

	
state_dict() → Dict

	

	
test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True, epochs: Optional[int] = None)

	

neuralogic.nn.evaluator.torch module

	
class TorchEvaluator(template: Template, settings: Settings)

	Bases: AbstractEvaluator

	
error_functions = {'SOFTENTROPY': CrossEntropyLoss(), 'SQUARED_DIFF': MSELoss()}

	

	
load_state_dict(state_dict: Dict)

	

	
state_dict() → Dict

	

	
test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
trainers = {Optimizer.ADAM: <function TorchEvaluator.<lambda>>, Optimizer.SGD: <function TorchEvaluator.<lambda>>}

	

Module contents

neuralogic.utils package

Subpackages

	neuralogic.utils.data package
	Module contents

	neuralogic.utils.visualize package
	Module contents

Module contents

neuralogic.utils.data package

Module contents

	
Family()

	

	
Mutagenesis()

	

	
Nations()

	

	
Trains()

	

	
XOR()

	

	
XOR_Vectorized()

	

neuralogic.utils.visualize package

Module contents

	
draw(drawer, obj, filename: Optional[str] = None, draw_ipython=True, img_type='png', *args, **kwargs)

	

	
draw_model(model, filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	
	Draws model either as an image of type img_type either into:
	
	a file - if filename is specified),

	an IPython Image - if draw_ipython is True

	or bytes otherwise

	Parameters

	
	model –

	filename –

	draw_ipython –

	img_type –

	value_detail –

	graphviz_path –

	args –

	kwargs –

	Returns

	

	
draw_sample(sample, filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	
	Draws sample either as an image of type img_type either into:
	
	a file - if filename is specified),

	an IPython Image - if draw_ipython is True

	or bytes otherwise

	Parameters

	
	sample –

	filename –

	draw_ipython –

	img_type –

	detail –

	graphviz_path –

	args –

	kwargs –

	Returns

	

	
get_drawing_settings(img_type: str = 'png', value_detail: int = 0, graphviz_path: Optional[str] = None) → SettingsProxy

	Returns the default settings instance for drawing with a specified image type.

	Parameters

	
	img_type –

	value_detail –

	graphviz_path –

	Returns

	

	
get_sample_drawer(settings: SettingsProxy)

	

	
get_template_drawer(settings: SettingsProxy)

	

	
model_to_dot_source(model) → str

	Renders the model into its dot source representation.

	Parameters

	model –

	Returns

	

	
sample_to_dot_source(sample, value_detail: int = 0) → str

	Renders the sample into its dot source representation.

	Parameters

	
	sample –

	value_detail –

	Returns

	

	
to_dot_source(drawer, obj) → str

	

neuralogic.core package

Subpackages

	neuralogic.core.builder package
	Submodules

	neuralogic.core.builder.builder module

	neuralogic.core.builder.components module

	neuralogic.core.builder.dataset_builder module

	Module contents

	neuralogic.core.constructs package
	Submodules

	neuralogic.core.constructs.factories module

	neuralogic.core.constructs.java_objects module

	neuralogic.core.constructs.metadata module

	neuralogic.core.constructs.predicate module

	neuralogic.core.constructs.rule module

	Module contents

	neuralogic.core.settings package
	Submodules

	neuralogic.core.settings.settings_proxy module

	Module contents

Submodules

neuralogic.core.enums module

	
class Backend(value)

	Bases: Enum

An enumeration.

	
DYNET = 'dynet'

	

	
JAVA = 'java'

	

	
TORCH = 'torch'

	

	
class Optimizer(value)

	Bases: str, Enum

An enumeration.

	
ADAM = 'ADAM'

	

	
SGD = 'SGD'

	

neuralogic.core.sources module

	
class Sources(sources)

	Bases: object

	
static from_args(args: List[str], settings: SettingsProxy) → Sources

	

	
static from_settings(settings: SettingsProxy) → Sources

	

	
to_json() → str

	

neuralogic.core.template module

	
class Template(*, template_file: Optional[str] = None)

	Bases: object

	
add_hook(relation: Union[BaseRelation, str], callback: Callable[[Any], None]) → None

	Hooks the callable to be called with the relation’s value as an argument when the value of
the relation is being calculated.

	Parameters

	
	relation –

	callback –

	Returns

	

	
add_module(module: Module)

	Expands the module into rules and adds them into the template

	Parameters

	module –

	Returns

	

	
add_rule(rule) → None

	Adds one rule to the template

	Parameters

	rule –

	Returns

	

	
add_rules(rules: List)

	Adds multiple rules to the template

	Parameters

	rules –

	Returns

	

	
build(settings: Settings, backend: Backend = Backend.JAVA)

	

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
get_parsed_template(settings: SettingsProxy, java_factory: JavaFactory)

	

	
remove_duplicates()

	Remove duplicates from the template

	
remove_hook(relation: Union[BaseRelation, str], callback)

	Removes the callable from the relation’s hooks

	Parameters

	
	relation –

	callback –

	Returns

	

Module contents

neuralogic.core.builder package

Submodules

neuralogic.core.builder.builder module

	
class Builder(settings: SettingsProxy)

	Bases: object

	
static build(samples)

	

	
build_model(parsed_template, backend: Backend, settings: SettingsProxy)

	

	
build_template_from_file(settings: SettingsProxy, filename: str)

	

	
from_logic_samples(parsed_template, logic_samples, backend: Backend)

	

	
from_sources(parsed_template, sources: Sources, backend: Backend)

	

	
static get_builders(settings: SettingsProxy)

	

	
stream_to_list(stream) → List

	

neuralogic.core.builder.components module

	
class BuiltDataset(samples)

	Bases: object

BuiltDataset represents an already built dataset - that is, a dataset that has been grounded and neuralized.

	
class Neuron(neuron: Dict[str, Any], index)

	Bases: object

	
static parse_hook_name(name: str)

	

	
class RawSample(sample)

	Bases: object

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
java_sample

	

	
class Sample(sample, java_sample)

	Bases: RawSample

	
static deserialize_network(network)

	

	
id

	

	
java_sample

	

	
neurons

	

	
output_neuron

	

	
target

	

	
class Weight(weight)

	Bases: object

	
static get_unit_weight() → Weight

	

neuralogic.core.builder.dataset_builder module

	
class DatasetBuilder(parsed_template, java_factory: JavaFactory)

	Bases: object

	
build_dataset(dataset: BaseDataset, backend: Backend, settings: SettingsProxy, file_mode: bool = False) → BuiltDataset

	Builds the dataset (does grounding and neuralization) for this template instance and the backend

	Parameters

	
	dataset –

	backend –

	settings –

	file_mode –

	Returns

	

	
build_examples(examples, examples_builder)

	

	
build_queries(queries, query_builder)

	

	
static merge_queries_with_examples(queries, examples, one_query_per_example, example_queries=True)

	

Module contents

neuralogic.core.constructs package

Submodules

neuralogic.core.constructs.factories module

	
class AtomFactory

	Bases: object

	
class Predicate(hidden=False, special=False)

	Bases: object

	
static get_predicate(name, arity, hidden, special) → Predicate

	

	
property hidden: Predicate

	

	
property special: Predicate

	

	
get(name: str) → BaseRelation

	

	
class ConstantFactory

	Bases: object

	
class VariableFactory

	Bases: object

neuralogic.core.constructs.java_objects module

	
class JavaFactory(settings: Optional[SettingsProxy] = None)

	Bases: object

	
atom_to_clause(atom)

	

	
get_conjunction(relations, variable_factory, default_weight=None, is_example=False)

	

	
get_generic_relation(relation_class, relation, variable_factory, default_weight=None, is_example=False)

	

	
get_lifted_example(example)

	

	
get_metadata(metadata, metadata_class)

	

	
get_new_weight_factory()

	

	
get_predicate(predicate)

	

	
get_predicate_metadata_pair(predicate_metadata)

	

	
get_query(query)

	

	
get_relation(relation, variable_factory, is_example=False)

	

	
get_rule(rule)

	

	
get_term(term, variable_factory)

	

	
get_value(weight)

	

	
get_valued_fact(relation, variable_factory, default_weight=None, is_example=False)

	

	
get_variable_factory()

	

	
get_weight(weight, name, fixed)

	

neuralogic.core.constructs.metadata module

	
class Metadata(offset=None, learnable: Optional[bool] = None, activation: Optional[Union[str, Activation, ActivationAgg]] = None, aggregation: Optional[Union[str, Aggregation]] = None, duplicit_grounding: bool = False)

	Bases: object

	
activation

	

	
aggregation

	

	
duplicit_grounding

	

	
static from_iterable(iterable: Iterable) → Metadata

	

	
learnable

	

	
offset

	

neuralogic.core.constructs.predicate module

	
class Predicate(name, arity, hidden=False, special=False)

	Bases: object

	
arity

	

	
hidden

	

	
name

	

	
set_arity(arity)

	

	
special

	

	
to_str()

	

	
class PredicateMetadata(predicate: Predicate, metadata: Metadata)

	Bases: object

	
metadata

	

	
predicate

	

neuralogic.core.constructs.rule module

	
class Rule(head, body)

	Bases: object

	
body

	

	
head

	

	
is_ellipsis_templated() → bool

	

	
metadata: Optional[Metadata]

	

Module contents

neuralogic.core.settings package

Submodules

neuralogic.core.settings.settings_proxy module

	
class SettingsProxy(*, optimizer: Optimizer, learning_rate: float, epochs: int, error_function: ErrorFunction, initializer: Initializer, rule_activation: Activation, relation_activation: Activation, iso_value_compression: bool, chain_pruning: bool)

	Bases: object

	
property chain_pruning: bool

	

	
property debug_exporting: bool

	

	
property default_fact_value: float

	

	
property epochs: int

	

	
property error_function

	

	
get_activation_function(activation: Activation)

	

	
property initializer

	

	
property initializer_const

	

	
property initializer_uniform_scale

	

	
property iso_value_compression: bool

	

	
property learning_rate: float

	

	
property optimizer

	

	
property relation_activation: Activation

	

	
property rule_activation: Activation

	

	
to_json() → str

	

Module contents

	
class Settings(*, optimizer: ~neuralogic.core.enums.Optimizer = Optimizer.ADAM, learning_rate: ~typing.Optional[float] = None, epochs: int = 3000, error_function: ~neuralogic.nn.loss.ErrorFunction = <neuralogic.nn.loss.MSE object>, initializer: ~neuralogic.nn.init.Initializer = <neuralogic.nn.init.Uniform object>, rule_activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, relation_activation: ~neuralogic.core.constructs.function.Activation = <neuralogic.core.constructs.function.Activation object>, iso_value_compression: bool = True, chain_pruning: bool = True)

	Bases: object

	
property chain_pruning: bool

	

	
create_disconnected_proxy() → SettingsProxy

	

	
create_proxy() → SettingsProxy

	

	
property epochs: int

	

	
property error_function: ErrorFunction

	

	
property initializer: Initializer

	

	
property iso_value_compression: bool

	

	
property learning_rate: float

	

	
property optimizer: Optimizer

	

	
property relation_activation: Activation

	

	
property rule_activation: Activation

	

neuralogic.dataset package

Available dataset formats

	Dataset (Logic format)

	FileDataset

	TensorDataset

	
class Dataset(examples: Optional[List[List[Union[BaseRelation, WeightedRelation, Rule]]]] = None, queries: Optional[List[Union[List[Union[BaseRelation, WeightedRelation, Rule]], BaseRelation, WeightedRelation, Rule]]] = None)

	Dataset encapsulating (learning) samples in the form of logic format, allowing users to fully take advantage of the
PyNeuraLogic library.

One learning sample consists of:
* Example: A list of logic facts and rules representing some instance (e.g., a graph)
* Query: A logic fact to mark the output of a model and optionally target label.

Examples and queries in the dataset can be paired in the following ways:

	N:N - Dataset contains N examples and N queries. They will be paired by their index.

dataset.add_example(first_example)
dataset.add_example(second_example)

dataset.add_query(first_query)
dataset.add_query(second_query)

Learning samples: [first_example, first_query], [second_example, second_query]

	1:N - Dataset contains 1 example and N queries. All queries will be run on the example.

dataset.add_example(example)

dataset.add_query(first_query)
dataset.add_query(second_query)

Learning samples: [example, first_query], [example, second_query]

	N:M - Dataset contains N examples and M queries (N <= M). It pairs queries similarly to the N: N case but also
allows running multiple queries on a specific example (by inserting a list of queries instead of one query).

dataset.add_example(first_example)
dataset.add_example(second_example)

dataset.add_query([first_query_0, first_query_1])
dataset.add_query(second_query)

Learning samples:
[first_example, first_query_0], [first_example, first_query_1], [second_example, second_query]

	Parameters

	
	examples (Optional[List]) – List of examples. Default: None

	queries (Optional[List]) – List of queries. Default: None

	
class FileDataset(examples_file: Optional[str] = None, queries_file: Optional[str] = None)

	FileDataset represents samples stored in files in the NeuraLogic [https://github.com/GustikS/NeuraLogic]
(logic) format.

	Parameters

	
	examples_file (Optional[str]) – Path to the examples file. Default: None

	queries_file (Optional[str]) – Path to the queries file. Default: None

	
class Data(x: Sequence, edge_index: Sequence, y: Union[Sequence, float, int], edge_attr: Optional[Sequence] = None, y_mask: Optional[Sequence] = None)

	The Data instance stores information about one specific graph instance.

Example

For example, the directed graph \(G = (V, E)\), where \(E = \{(0, 1), (1, 2), (2, 0)\}\),
node features \(X = \{[0], [1], [0]\}\) and target nodes’ labels
\(Y = \{0, 1, 0\}\) would be represented as:

data = Data(
 x=[[0], [1], [0]],
 edge_index=[
 [0, 1, 2],
 [1, 2, 0],
],
 y=[0, 1, 0],
)

	Parameters

	
	x (Sequence) – Sequence of node features.

	edge_index (Sequence) – Edges represented via a graph connectivity format - matrix [[...src], [...dst]].

	y (Union[Sequence, float, int]) – Sequence of labels of all nodes or one graph label.

	edge_attr (Optional[Sequence]) – Optional sequence of edge features. Default: None

	y_mask (Optional[Sequence]) – Optional sequence of node ids to generate queries for. Default: None (all nodes)

	
static from_pyg(data) → List[Data]

	Converts a PyTorch Geometric Data instance into a list of PyNeuraLogic Data instances.
The conversion supports train_mask, test_mask and val_mask attributes -
for each mask the conversion yields a new data instance.

	Parameters

	data – The PyTorch Geometric Data instance

	Returns

	The list of PyNeuraLogic Data instances

	
class TensorDataset(data: List[Data], one_hot_encode_labels: bool = False, one_hot_decode_features: bool = False, number_of_classes: int = 1, feature_name: str = 'node_feature', edge_name: str = 'edge', output_name: str = 'predict')

	The TensorDataset holds a list of Data instances -
a list of graphs represented in a tensor format.

	Parameters

	
	data (List[Data]) – List of data (graph) instances.

	one_hot_encode_labels (bool) – Turn numerical labels into one hot encoded vectors - e.g., label 2 would be turned
into a vector [0, 0, 1, .., 0] of length number_of_classes.
Default: False

	one_hot_decode_features (bool = False) – Turn one hot encoded feature vectors into a scalar - e.g., feature vector [0, 0, 1] would be turned into a
scalar feature 2.
Default: False

	number_of_classes (int) – Specifies the number of classes for converting numerical labels to one hot encoded vectors.
Default: 1

	feature_name (str) – Specify the node feature predicate name used for converting into the logic format.
Default: node_feature

	edge_name (str) – Specify the edge predicate name used for converting into the logic format.
Default: edge

	output_name (str) – Specify the output predicate name used for converting into the logic format.
Default: predict

neuralogic.nn package

Subpackages

	neuralogic.nn.evaluator package
	Submodules

	neuralogic.nn.evaluator.dynet module

	neuralogic.nn.evaluator.java module

	neuralogic.nn.evaluator.torch module

	Module contents

Submodules

neuralogic.nn.init module

	
class Constant(value: float = 0.1)

	Bases: Initializer

Initializes learnable parameters with the value.

	Parameters

	value (float) – Value to fill weights with. Default: 0.1

	
get_settings() → Dict[str, Any]

	

	
class Glorot(scale: float = 2)

	Bases: Initializer

Initializes learnable parameters with samples from a uniform distribution (from the interval
[-scale / 2, scale / 2]) using the Glorot method.

	Parameters

	scale (float) – Scale of a uniform distribution interval [-scale / 2, scale / 2]. Default: 2

	
get_settings() → Dict[str, Any]

	

	
is_simple() → bool

	

	
class He(scale: float = 2)

	Bases: Initializer

Initializes learnable parameters with samples from a uniform distribution (from the interval
[-scale / 2, scale / 2]) using the He method.

	Parameters

	scale (float) – Scale of a uniform distribution interval [-scale / 2, scale / 2]. Default: 2

	
get_settings() → Dict[str, Any]

	

	
is_simple() → bool

	

	
class Initializer

	Bases: object

	
get_settings() → Dict[str, Any]

	

	
is_simple() → bool

	

	
class InitializerNames

	Bases: object

	
CONSTANT = 'CONSTANT'

	

	
GLOROT = 'GLOROT'

	

	
HE = 'HE'

	

	
LONGTAIL = 'LONGTAIL'

	

	
NORMAL = 'NORMAL'

	

	
UNIFORM = 'UNIFORM'

	

	
class Longtail

	Bases: Initializer

Initializes learnable parameters with random samples from a long tail distribution

	
class Normal

	Bases: Initializer

Initializes learnable parameters with random samples from a normal (Gaussian) distribution

	
class Uniform(scale: float = 2)

	Bases: Initializer

Initializes learnable parameters with random uniformly distributed samples from the interval
[-scale / 2, scale / 2].

	Parameters

	scale (float) – Scale of the distribution interval [-scale / 2, scale / 2]. Default: 2

	
get_settings() → Dict[str, Any]

	

neuralogic.nn.base module

	
class AbstractEvaluator(backend: Backend, template: Template, settings: Settings)

	Bases: object

	
build_dataset(dataset: Union[BaseDataset, BuiltDataset], file_mode: bool = False)

	

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
load_state_dict(state_dict: Dict)

	

	
property model: AbstractNeuraLogic

	

	
parameters() → Dict

	

	
reset_parameters()

	

	
set_dataset(dataset: Union[BaseDataset, BuiltDataset])

	

	
state_dict() → Dict

	

	
test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
class AbstractNeuraLogic(backend: Backend, dataset_builder: DatasetBuilder, template: Template, settings: SettingsProxy)

	Bases: object

	
build_dataset(dataset: Union[BaseDataset, BuiltDataset], file_mode: bool = False)

	

	
draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	

	
load_state_dict(state_dict: Dict)

	

	
parameters() → Dict

	

	
run_hook(hook: str, value)

	

	
set_hooks(hooks)

	

	
state_dict() → Dict

	

	
sync_template(state_dict: Optional[Dict] = None, weights=None)

	

neuralogic.nn.dynet module

neuralogic.nn.java module

	
class NeuraLogic(model, dataset_builder, template, settings: SettingsProxy)

	Bases: AbstractNeuraLogic

	
load_state_dict(state_dict: Dict)

	

	
reset_parameters()

	

	
set_training_samples(samples)

	

	
state_dict() → Dict

	

	
test()

	

	
train()

	

neuralogic.nn.torch module

	
class NeuraLogic(model: List[Weight], dataset_builder, template, settings: Optional[SettingsProxy] = None)

	Bases: AbstractNeuraLogic

	
activations = {'Average': <built-in method mean of type object>, 'Maximum': <built-in method max of type object>, 'Minimum': <built-in method min of type object>, 'ReLu': <built-in method relu of type object>, 'Sigmoid': <built-in method sigmoid of type object>, 'Sum': <built-in method sum of type object>, 'Tanh': <built-in method tanh of type object>}

	

	
build_sample(sample: Sample)

	

	
initializers = {'CONSTANT': <function NeuraLogic.<lambda>>, 'GLOROT': <function NeuraLogic.<lambda>>, 'HE': <function NeuraLogic.<lambda>>, 'LONGTAIL': <function longtail>, 'NORMAL': <function NeuraLogic.<lambda>>, 'UNIFORM': <function NeuraLogic.<lambda>>}

	

	
load_state_dict(state_dict: Dict)

	

	
process_neuron_inputs(neuron: Neuron, neurons: List[Tensor], weights: ParameterList) → Tuple[List[Union[Tensor, int, float]], List[Tensor], List[Tensor]]

	

	
reset_parameters()

	

	
state_dict() → Dict

	

	
static to_tensor_value(value) → Tensor

	

	
to_torch_expression(neuron: Neuron, neurons: List[Tensor], weights: ParameterList) → Tensor

	

	
longtail(tensor: Tensor, _: SettingsProxy)

	

Module contents

	
get_evaluator(template, settings=None, backend: Backend = Backend.JAVA)

	

	
get_neuralogic_layer(backend: Backend = Backend.JAVA)

	

neuralogic.nn.evaluator package

Submodules

neuralogic.nn.evaluator.dynet module

neuralogic.nn.evaluator.java module

	
class JavaEvaluator(problem: Optional[Template], settings: Settings)

	Bases: AbstractEvaluator

	
load_state_dict(state_dict: Dict)

	

	
reset_dataset(dataset)

	

	
set_dataset(dataset: Union[BaseDataset, BuiltDataset])

	

	
state_dict() → Dict

	

	
test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True, epochs: Optional[int] = None)

	

neuralogic.nn.evaluator.torch module

	
class TorchEvaluator(template: Template, settings: Settings)

	Bases: AbstractEvaluator

	
error_functions = {'SOFTENTROPY': CrossEntropyLoss(), 'SQUARED_DIFF': MSELoss()}

	

	
load_state_dict(state_dict: Dict)

	

	
state_dict() → Dict

	

	
test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

	

	
trainers = {Optimizer.ADAM: <function TorchEvaluator.<lambda>>, Optimizer.SGD: <function TorchEvaluator.<lambda>>}

	

Module contents

neuralogic.utils package

Subpackages

	neuralogic.utils.data package
	Module contents

	neuralogic.utils.visualize package
	Module contents

Module contents

neuralogic.utils.data package

Module contents

	
Family()

	

	
Mutagenesis()

	

	
Nations()

	

	
Trains()

	

	
XOR()

	

	
XOR_Vectorized()

	

neuralogic.utils.visualize package

Module contents

	
draw(drawer, obj, filename: Optional[str] = None, draw_ipython=True, img_type='png', *args, **kwargs)

	

	
draw_model(model, filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	
	Draws model either as an image of type img_type either into:
	
	a file - if filename is specified),

	an IPython Image - if draw_ipython is True

	or bytes otherwise

	Parameters

	
	model –

	filename –

	draw_ipython –

	img_type –

	value_detail –

	graphviz_path –

	args –

	kwargs –

	Returns

	

	
draw_sample(sample, filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0, graphviz_path: Optional[str] = None, *args, **kwargs)

	
	Draws sample either as an image of type img_type either into:
	
	a file - if filename is specified),

	an IPython Image - if draw_ipython is True

	or bytes otherwise

	Parameters

	
	sample –

	filename –

	draw_ipython –

	img_type –

	detail –

	graphviz_path –

	args –

	kwargs –

	Returns

	

	
get_drawing_settings(img_type: str = 'png', value_detail: int = 0, graphviz_path: Optional[str] = None) → SettingsProxy

	Returns the default settings instance for drawing with a specified image type.

	Parameters

	
	img_type –

	value_detail –

	graphviz_path –

	Returns

	

	
get_sample_drawer(settings: SettingsProxy)

	

	
get_template_drawer(settings: SettingsProxy)

	

	
model_to_dot_source(model) → str

	Renders the model into its dot source representation.

	Parameters

	model –

	Returns

	

	
sample_to_dot_source(sample, value_detail: int = 0) → str

	Renders the sample into its dot source representation.

	Parameters

	
	sample –

	value_detail –

	Returns

	

	
to_dot_source(drawer, obj) → str

	

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 neuralogic	

 	
 	
 neuralogic.core	

 	
 	
 neuralogic.core.builder	

 	
 	
 neuralogic.core.builder.builder	

 	
 	
 neuralogic.core.builder.components	

 	
 	
 neuralogic.core.builder.dataset_builder	

 	
 	
 neuralogic.core.constructs	

 	
 	
 neuralogic.core.constructs.factories	

 	
 	
 neuralogic.core.constructs.java_objects	

 	
 	
 neuralogic.core.constructs.metadata	

 	
 	
 neuralogic.core.constructs.predicate	

 	
 	
 neuralogic.core.constructs.rule	

 	
 	
 neuralogic.core.enums	

 	
 	
 neuralogic.core.settings	

 	
 	
 neuralogic.core.settings.settings_proxy	

 	
 	
 neuralogic.core.sources	

 	
 	
 neuralogic.core.template	

 	
 	
 neuralogic.logging	

 	
 	
 neuralogic.nn	

 	
 	
 neuralogic.nn.base	

 	
 	
 neuralogic.nn.evaluator	

 	
 	
 neuralogic.nn.evaluator.java	

 	
 	
 neuralogic.nn.evaluator.torch	

 	
 	
 neuralogic.nn.init	

 	
 	
 neuralogic.nn.java	

 	
 	
 neuralogic.nn.torch	

 	
 	
 neuralogic.utils	

 	
 	
 neuralogic.utils.data	

 	
 	
 neuralogic.utils.visualize	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	AbstractEvaluator (class in neuralogic.nn.base)

 	AbstractNeuraLogic (class in neuralogic.nn.base)

 	activation (Metadata attribute)

 	activations (NeuraLogic attribute)

 	ADAM (Optimizer attribute)

 	add_handler() (in module neuralogic.logging)

 	add_hook() (Template method)

 	add_module() (Template method)

 	add_rule() (Template method)

 	
 	add_rules() (Template method)

 	aggregation (Metadata attribute)

 	ALL (Level attribute)

 	APPNPConv (class in neuralogic.nn.module.gnn.appnp)

 	arity (Predicate attribute)

 	atom_to_clause() (JavaFactory method)

 	AtomFactory (class in neuralogic.core.constructs.factories)

 	AtomFactory.Predicate (class in neuralogic.core.constructs.factories)

 	AvgPooling (class in neuralogic.nn.module.general.pooling)

B

 	
 	Backend (class in neuralogic.core.enums)

 	body (Rule attribute)

 	build() (Builder static method)

 	(Template method)

 	build_dataset() (AbstractEvaluator method)

 	(AbstractNeuraLogic method)

 	(DatasetBuilder method)

 	
 	build_examples() (DatasetBuilder method)

 	build_model() (Builder method)

 	build_queries() (DatasetBuilder method)

 	build_sample() (NeuraLogic method)

 	build_template_from_file() (Builder method)

 	Builder (class in neuralogic.core.builder.builder)

 	BuiltDataset (class in neuralogic.core.builder.components)

C

 	
 	chain_pruning (Settings property)

 	(SettingsProxy property)

 	clear_handlers() (in module neuralogic.logging)

 	COLOR (Formatter attribute)

 	CONFIG (Level attribute)

 	
 	Constant (class in neuralogic.nn.init)

 	CONSTANT (InitializerNames attribute)

 	ConstantFactory (class in neuralogic.core.constructs.factories)

 	create_disconnected_proxy() (Settings method)

 	create_proxy() (Settings method)

D

 	
 	Data (class in neuralogic.dataset.tensor)

 	Dataset (class in neuralogic.dataset.logic)

 	DatasetBuilder (class in neuralogic.core.builder.dataset_builder)

 	debug_exporting (SettingsProxy property)

 	default_fact_value (SettingsProxy property)

 	deserialize_network() (Sample static method)

 	draw() (AbstractEvaluator method)

 	(AbstractNeuraLogic method)

 	(in module neuralogic.utils.visualize)

 	(RawSample method)

 	(Template method)

 	
 	draw_model() (in module neuralogic.utils.visualize)

 	draw_sample() (in module neuralogic.utils.visualize)

 	duplicit_grounding (Metadata attribute)

 	DYNET (Backend attribute)

E

 	
 	epochs (Settings property)

 	(SettingsProxy property)

 	
 	error_function (Settings property)

 	(SettingsProxy property)

 	error_functions (TorchEvaluator attribute)

F

 	
 	Family() (in module neuralogic.utils.data)

 	FileDataset (class in neuralogic.dataset.file)

 	FINE (Level attribute)

 	FINER (Level attribute)

 	FINEST (Level attribute)

 	Formatter (class in neuralogic.logging)

 	
 	from_args() (Sources static method)

 	from_iterable() (Metadata static method)

 	from_logic_samples() (Builder method)

 	from_pyg() (Data static method)

 	from_settings() (Sources static method)

 	from_sources() (Builder method)

G

 	
 	GATv2Conv (class in neuralogic.nn.module.gnn.gatv2)

 	GCNConv (class in neuralogic.nn.module.gnn.gcn)

 	get() (AtomFactory method)

 	get_activation_function() (SettingsProxy method)

 	get_builders() (Builder static method)

 	get_conjunction() (JavaFactory method)

 	get_drawing_settings() (in module neuralogic.utils.visualize)

 	get_evaluator() (in module neuralogic.nn)

 	get_generic_relation() (JavaFactory method)

 	get_lifted_example() (JavaFactory method)

 	get_metadata() (JavaFactory method)

 	get_neuralogic_layer() (in module neuralogic.nn)

 	get_new_weight_factory() (JavaFactory method)

 	get_parsed_template() (Template method)

 	get_predicate() (AtomFactory.Predicate static method)

 	(JavaFactory method)

 	get_predicate_metadata_pair() (JavaFactory method)

 	get_query() (JavaFactory method)

 	
 	get_relation() (JavaFactory method)

 	get_rule() (JavaFactory method)

 	get_sample_drawer() (in module neuralogic.utils.visualize)

 	get_settings() (Constant method)

 	(Glorot method)

 	(He method)

 	(Initializer method)

 	(Uniform method)

 	get_template_drawer() (in module neuralogic.utils.visualize)

 	get_term() (JavaFactory method)

 	get_unit_weight() (Weight static method)

 	get_value() (JavaFactory method)

 	get_valued_fact() (JavaFactory method)

 	get_variable_factory() (JavaFactory method)

 	get_weight() (JavaFactory method)

 	GINConv (class in neuralogic.nn.module.gnn.gin)

 	Glorot (class in neuralogic.nn.init)

 	GLOROT (InitializerNames attribute)

 	GRU (class in neuralogic.nn.module.general.gru)

H

 	
 	He (class in neuralogic.nn.init)

 	HE (InitializerNames attribute)

 	
 	head (Rule attribute)

 	hidden (AtomFactory.Predicate property)

 	(Predicate attribute)

I

 	
 	id (Sample attribute)

 	INFO (Level attribute)

 	initial_seed() (in module neuralogic)

 	initialize() (in module neuralogic)

 	Initializer (class in neuralogic.nn.init)

 	initializer (Settings property)

 	(SettingsProxy property)

 	initializer_const (SettingsProxy property)

 	initializer_uniform_scale (SettingsProxy property)

 	
 	InitializerNames (class in neuralogic.nn.init)

 	initializers (NeuraLogic attribute)

 	is_ellipsis_templated() (Rule method)

 	is_initialized() (in module neuralogic)

 	is_simple() (Glorot method)

 	(He method)

 	(Initializer method)

 	iso_value_compression (Settings property)

 	(SettingsProxy property)

J

 	
 	JAVA (Backend attribute)

 	java_sample (RawSample attribute)

 	(Sample attribute)

 	
 	JavaEvaluator (class in neuralogic.nn.evaluator.java)

 	JavaFactory (class in neuralogic.core.constructs.java_objects)

L

 	
 	learnable (Metadata attribute)

 	learning_rate (Settings property)

 	(SettingsProxy property)

 	Level (class in neuralogic.logging)

 	Linear (class in neuralogic.nn.module.general.linear)

 	load_state_dict() (AbstractEvaluator method)

 	(AbstractNeuraLogic method)

 	(JavaEvaluator method)

 	(NeuraLogic method), [1]

 	(TorchEvaluator method)

 	
 	Longtail (class in neuralogic.nn.init)

 	LONGTAIL (InitializerNames attribute)

 	longtail() (in module neuralogic.nn.torch)

 	LSTM (class in neuralogic.nn.module.general.lstm)

M

 	
 	MAGNNLinear (class in neuralogic.nn.module.meta.magnn)

 	MAGNNMean (class in neuralogic.nn.module.meta.magnn)

 	manual_seed() (in module neuralogic)

 	MaxPooling (class in neuralogic.nn.module.general.pooling)

 	merge_queries_with_examples() (DatasetBuilder static method)

 	MetaConv (class in neuralogic.nn.module.meta.meta)

 	Metadata (class in neuralogic.core.constructs.metadata)

 	metadata (PredicateMetadata attribute)

 	(Rule attribute)

 	MLP (class in neuralogic.nn.module.general.mlp)

 	model (AbstractEvaluator property)

 	model_to_dot_source() (in module neuralogic.utils.visualize)

 	
 module

 	neuralogic

 	neuralogic.core

 	neuralogic.core.builder

 	neuralogic.core.builder.builder

 	neuralogic.core.builder.components

 	neuralogic.core.builder.dataset_builder

 	neuralogic.core.constructs

 	neuralogic.core.constructs.factories

 	neuralogic.core.constructs.java_objects

 	neuralogic.core.constructs.metadata

 	neuralogic.core.constructs.predicate

 	neuralogic.core.constructs.rule

 	neuralogic.core.enums

 	neuralogic.core.settings

 	neuralogic.core.settings.settings_proxy

 	neuralogic.core.sources

 	neuralogic.core.template

 	neuralogic.logging

 	neuralogic.nn

 	neuralogic.nn.base

 	neuralogic.nn.evaluator

 	neuralogic.nn.evaluator.java

 	neuralogic.nn.evaluator.torch

 	neuralogic.nn.init

 	neuralogic.nn.java

 	neuralogic.nn.torch

 	neuralogic.utils

 	neuralogic.utils.data

 	neuralogic.utils.visualize

 	
 	Mutagenesis() (in module neuralogic.utils.data)

N

 	
 	name (Predicate attribute)

 	Nations() (in module neuralogic.utils.data)

 	
 neuralogic

 	module

 	NeuraLogic (class in neuralogic.nn.java)

 	(class in neuralogic.nn.torch)

 	
 neuralogic.core

 	module

 	
 neuralogic.core.builder

 	module

 	
 neuralogic.core.builder.builder

 	module

 	
 neuralogic.core.builder.components

 	module

 	
 neuralogic.core.builder.dataset_builder

 	module

 	
 neuralogic.core.constructs

 	module

 	
 neuralogic.core.constructs.factories

 	module

 	
 neuralogic.core.constructs.java_objects

 	module

 	
 neuralogic.core.constructs.metadata

 	module

 	
 neuralogic.core.constructs.predicate

 	module

 	
 neuralogic.core.constructs.rule

 	module

 	
 neuralogic.core.enums

 	module

 	
 neuralogic.core.settings

 	module

 	
 neuralogic.core.settings.settings_proxy

 	module

 	
 	
 neuralogic.core.sources

 	module

 	
 neuralogic.core.template

 	module

 	
 neuralogic.logging

 	module

 	
 neuralogic.nn

 	module

 	
 neuralogic.nn.base

 	module

 	
 neuralogic.nn.evaluator

 	module

 	
 neuralogic.nn.evaluator.java

 	module

 	
 neuralogic.nn.evaluator.torch

 	module

 	
 neuralogic.nn.init

 	module

 	
 neuralogic.nn.java

 	module

 	
 neuralogic.nn.torch

 	module

 	
 neuralogic.utils

 	module

 	
 neuralogic.utils.data

 	module

 	
 neuralogic.utils.visualize

 	module

 	Neuron (class in neuralogic.core.builder.components)

 	neurons (Sample attribute)

 	Normal (class in neuralogic.nn.init)

 	NORMAL (Formatter attribute)

 	(InitializerNames attribute)

O

 	
 	OFF (Level attribute)

 	offset (Metadata attribute)

 	Optimizer (class in neuralogic.core.enums)

 	
 	optimizer (Settings property)

 	(SettingsProxy property)

 	output_neuron (Sample attribute)

P

 	
 	parameters() (AbstractEvaluator method)

 	(AbstractNeuraLogic method)

 	parse_hook_name() (Neuron static method)

 	Pooling (class in neuralogic.nn.module.general.pooling)

 	
 	Predicate (class in neuralogic.core.constructs.predicate)

 	predicate (PredicateMetadata attribute)

 	PredicateMetadata (class in neuralogic.core.constructs.predicate)

 	process_neuron_inputs() (NeuraLogic method)

R

 	
 	RawSample (class in neuralogic.core.builder.components)

 	relation_activation (Settings property)

 	(SettingsProxy property)

 	remove_duplicates() (Template method)

 	remove_hook() (Template method)

 	reset_dataset() (JavaEvaluator method)

 	reset_parameters() (AbstractEvaluator method)

 	(NeuraLogic method), [1]

 	
 	ResGatedGraphConv (class in neuralogic.nn.module.gnn.res_gated)

 	RGCNConv (class in neuralogic.nn.module.gnn.rgcn)

 	RNN (class in neuralogic.nn.module.general.rnn)

 	Rule (class in neuralogic.core.constructs.rule)

 	rule_activation (Settings property)

 	(SettingsProxy property)

 	run_hook() (AbstractNeuraLogic method)

 	RvNN (class in neuralogic.nn.module.general.rvnn)

S

 	
 	SAGEConv (class in neuralogic.nn.module.gnn.gsage)

 	Sample (class in neuralogic.core.builder.components)

 	sample_to_dot_source() (in module neuralogic.utils.visualize)

 	seed() (in module neuralogic)

 	set_arity() (Predicate method)

 	set_dataset() (AbstractEvaluator method)

 	(JavaEvaluator method)

 	set_hooks() (AbstractNeuraLogic method)

 	set_jvm_options() (in module neuralogic)

 	set_jvm_path() (in module neuralogic)

 	set_training_samples() (NeuraLogic method)

 	Settings (class in neuralogic.core.settings)

 	SettingsProxy (class in neuralogic.core.settings.settings_proxy)

 	
 	SEVERE (Level attribute)

 	SGConv (class in neuralogic.nn.module.gnn.sg)

 	SGD (Optimizer attribute)

 	Sources (class in neuralogic.core.sources)

 	special (AtomFactory.Predicate property)

 	(Predicate attribute)

 	state_dict() (AbstractEvaluator method)

 	(AbstractNeuraLogic method)

 	(JavaEvaluator method)

 	(NeuraLogic method), [1]

 	(TorchEvaluator method)

 	stream_to_list() (in module neuralogic.core.builder.builder)

 	SumPooling (class in neuralogic.nn.module.general.pooling)

 	sync_template() (AbstractNeuraLogic method)

T

 	
 	TAGConv (class in neuralogic.nn.module.gnn.tag)

 	target (Sample attribute)

 	Template (class in neuralogic.core.template)

 	TensorDataset (class in neuralogic.dataset.tensor)

 	test() (AbstractEvaluator method)

 	(JavaEvaluator method)

 	(NeuraLogic method)

 	(TorchEvaluator method)

 	TextIOWrapper (class in neuralogic.logging)

 	to_dot_source() (in module neuralogic.utils.visualize)

 	to_json() (SettingsProxy method)

 	(Sources method)

 	
 	to_str() (Predicate method)

 	to_tensor_value() (NeuraLogic static method)

 	to_torch_expression() (NeuraLogic method)

 	TORCH (Backend attribute)

 	TorchEvaluator (class in neuralogic.nn.evaluator.torch)

 	train() (AbstractEvaluator method)

 	(JavaEvaluator method)

 	(NeuraLogic method)

 	(TorchEvaluator method)

 	trainers (TorchEvaluator attribute)

 	Trains() (in module neuralogic.utils.data)

U

 	
 	Uniform (class in neuralogic.nn.init)

 	
 	UNIFORM (InitializerNames attribute)

V

 	
 	VariableFactory (class in neuralogic.core.constructs.factories)

W

 	
 	WARNING (Level attribute)

 	
 	Weight (class in neuralogic.core.builder.components)

 	write() (TextIOWrapper method)

X

 	
 	XOR() (in module neuralogic.utils.data)

 	
 	XOR_Vectorized() (in module neuralogic.utils.data)

Deep Learning on Databases

Before running machine learning models written in some popular frameworks on data coming from relational databases, we
must first figure out how to transform data properly. Usually, models expect input data to be in the form of fixed-size
numeric tensors. Making such a transformation on one database table (relation) might be straightforward. However,
it does not have to be the case when our data are linked via various (attributed) relations, which is not very unusual.

So is there a way to treat relational data more simply and efficiently? In the NeuraLogic language, based on relational
logic, relations are first-class citizens. Everything is built around and upon them, making feature engineering of
relational data (such as from relational databases) intuitive and direct.

Since relational databases are such an essential topic that most developers and engineers come in touch with on a daily
basis, the PyNeuraLogic framework is equipped with a set of tools to handle loading data from databases and exporting
your trained model to SQL so that you can evaluate your models directly in your databases!

Let’s dive into an example where we explore ways of loading data from a relational database, training a model on data,
and exporting the trained model to SQL.

Note

⚗️ Evaluation of trained models directly in the database (conversion to SQL) is currently an experimental feature;
therefore, it comes with a few restrictions - models cannot contain recursive rules, matrices, and vectors.
Also, only a limited set of activation functions is implemented.

Data loading from database

Note

💾 Download database tables SQL dump. [https://gist.github.com/LukasZahradnik/76b8b6b5e1d6f20752fdb8c61098b21b]

First things first, get to know the data we work with. Our example database contains information about molecules. Each
molecule has some attributes and is formed by various numbers of atoms. Atoms also have some attributes and can be in
bond (connected) with another atom. Therefore, our database consists of three tables - molecule, atom, and bond.

[image: Mutagenesis DB tables]
Database diagram of the molecule database we are working with

In this scenario, our task is to determine the mutagenicity of a molecule on Salmonella typhimurium. Our target is the
mutagenic field in the molecule table.

But how exactly can we transform those tabular data to something that PyNeuraLogic would understand, that is,
relations? We have to define mappings according to our needs.
For example, we would want to map each row of the atom table to the relation R.atom with atom_id and molecule_id
fields as the relations’ terms and the charge field as the relations’ values.

[image: Mapping DB table to PyNeuraLogic relations]
Mapping of one table to valued facts. We map atom_id and molecule_id columns to terms the charge
column to fact value.

Notice that in the mapping visualization above, we skipped element and type fields. That is because we will
not utilize them in our model, but there is nothing stopping us from mapping all fields to terms or even mapping
one database table to multiple relations.

The mapping itself is quite straightforward; we create an instance of DBSource with relation name,
table name, and column names (that will be mapped to terms) as its arguments.
We will utilize only data from bond and atom tables in our example set to keep it simple.

from neuralogic.dataset.db import DBSource, DBDataset

atoms = DBSource("atom", "atom", ["atom_id", "molecule_id"], value_column="charge")
bonds = DBSource("bond", "bond", ["atom1_id", "atom2_id", "type"], default_value=1)

To train our model, we also need labels. We can find them in the molecule table under the mutagenic field. But this
field contains textual data (“yes”/”no”), so we cannot just simply load the column as values (labels) of queries;
we have to do a little bit of postprocessing. For those scenarios, DBSource can take a value_mapper argument
that maps the original value from a table to some arbitrary numeric value.

queries = DBSource(
 "mutagenic",
 "molecule",
 ["molecule_id"],
 value_column="mutagenic",
 value_mapper=lambda value: 1 if value == "yes" else 0
)

Since our task is to determine the mutagenicity, let’s give our queries proper naming, i.e., mutagenic,
that is more self-explaining (and can be more understandable by other team members). Let’s put everything together and
create a connection with some compatible driver (such as psycopg2 or MariaDB) and create a logic dataset.
With just those few lines of code, we have managed to create a dataset in the logic representation (relations)
populated from a database.

import psycopg2

with psycopg2.connect(**connection_config) as connection:
 dataset = DBDataset(connection, [bonds, atoms], queries)
 logic_dataset = dataset.to_dataset()

Training on data from database

The dataset is ready; let’s take a look at defining a template. A template can be seen as a high-level blueprint for
constructing a computation graph tailored for each query (sample).

The template we define contains embeddings for each type of bond (bond type is an integer in the range 1-7). Then we
define four stacked Message Passing Neural Networks (MPNNs) where edges are bonds and nodes are atoms. Our proposed
layers are similar to the GraphSAGE architecture except for extra edge (bond) embeddings. The template then
defines a readout layer (mutagenic) that pools embeddings of all nodes from all layers and aggregates them into one
value passed into a sigmoid function.

from neuralogic.core import Template, R, V, Activation

template = Template()
template += [R.bond_embed(bond_type)[1,] for bond_type in range(1, 8)]

template += R.layer1(V.A)[1,] <= (R.atom(V.N, V.M)[1,], R.bond_embed(V.B)[1,], R._bond(V.N, V.A, V.B))
template += R.layer1(V.A)[1,] <= R.atom(V.A, V.M)[1,]

template += R.layer2(V.A)[1,] <= (R.layer1(V.N)[1,], R.bond_embed(V.B)[1,], R._bond(V.N, V.A, V.B))
template += R.layer2(V.A)[1,] <= R.layer1(V.A)[1,]

template += R.layer3(V.A)[1,] <= (R.layer2(V.N)[1,], R.bond_embed(V.B)[1,], R._bond(V.N, V.A, V.B))
template += R.layer3(V.A)[1,] <= R.layer2(V.A)[1,]

template += R.layer4(V.A)[1,] <= (R.layer3(V.N)[1,], R.bond_embed(V.B)[1,], R._bond(V.N, V.A, V.B))
template += R.layer4(V.A)[1,] <= R.layer3(V.A)[1,]

template += (R.mutagenic(V.M)[1,] <= (
 R.layer1(V.A)[1,], R.layer2(V.A)[1,], R.layer3(V.A)[1,], R.layer4(V.A)[1,], R.atom(V.A, V.M)[1,]
)) | [Activation.IDENTITY]

template += R.mutagenic / 1 | [Activation.SIGMOID]

Now we can build our model by passing the template into an evaluator. We then use the evaluator
to train the model on our dataset.

from neuralogic.nn import get_evaluator
from neuralogic.core import Settings, Optimizer
from neuralogic.nn.init import Glorot
from neuralogic.nn.loss import CrossEntropy

settings = Settings(
 optimizer=Optimizer.ADAM, epochs=2000, initializer=Glorot(), error_function=CrossEntropy(with_logits=False)
)

neuralogic_evaluator = get_evaluator(template, settings)
built_dataset = neuralogic_evaluator.build_dataset(logic_dataset)

for epoch, (total_loss, seen_instances) in enumerate(neuralogic_evaluator.train(built_dataset)):
 print(f"Epoch {epoch}, total loss: {total_loss}, average loss {total_loss / seen_instances}")

Converting model to SQL

With just a few lines of code, the model that we just built from scratch and trained can be turned into (Postgres) SQL
code. By doing so, you can evaluate the model directly on your database server without installing NeuraLogic or even
Python. Just plain PostgreSQL will do!

All we have to do is create a converter that takes our model, table mappings, and settings. Table mappings are similar
to DBSource from the beginning of this article and map relation name to table name and terms to
column names in the table.

from neuralogic.db import PostgresConverter, TableMapping

convertor = PostgresConverter(
 neuralogic_evaluator.model,
 [
 TableMapping("_bond", "bond", ["atom1_id", "atom2_id", "type"]),
 TableMapping("atom", "atom", ["atom_id", "molecule_id"], value_column="charge")
],
 settings,
)

Before you can evaluate your model in SQL, it is necessary to do a proper setup. We can achieve this by
installing the SQL code returned from the get_std_functions method. This SQL code will create two schemes (namespaces)
- neuralogic_std and neuralogic, and a minimal set of generic functions used in your model
(activations, aggregations, etc.) in the prior scheme (e.g., neuralogic_std.sigmoid).
The latter scheme will contain the functions for evaluating your model.

std_sql = convertor.get_std_functions()

After installing the first SQL code, you can install your actual model as SQL code that can be retrieved by calling the
to_sql method.

sql = convertor.to_sql()

Note

💾 Download the full SQL dump (with std functions) of the trained model. [https://gist.github.com/LukasZahradnik/cb4535a272026f088d60b09e68bc03b3]

You are set and ready to evaluate your trained model directly in the database without data ever leaving it.
For each fact and head of a rule, there is a corresponding function in the neuralogic namespace.
Let’s say we would want to evaluate our model on a molecule with an id “d150”.
It is as simple as making one select statement!

SELECT * FROM neuralogic.mutagenic('d150');

[image: The result of mutagenic('d150')]

The evaluation is not limited only to one molecule id. It is possible to use a NULL as a “placeholder”
(just like a variable in NeuraLogic) and retrieve all inferrable substitutions and their values.

SELECT * FROM neuralogic.mutagenic(NULL);

[image: The results of mutagenic(NULL)]

As we already said before, every rule head has its corresponding function (if there is no table mapping attached).
This means we can even inspect values of different layers, for example, the value of atom d15_11 in the first layer.

SELECT * FROM neuralogic.layer1('d15_11');

[image: The results of layer1('d15_11')]

Conclusion

This short tutorial introduced and demonstrated PyNeuraLogic’s support of deep learning on databases on a simple example
(learning on molecules). We went through how to fetch data from a database, transform them into PyNeuraLogic
relations with just a few lines of code, and train a model on those data. After training the model, we dumped it
to SQL code, which allowed us to evaluate the model directly in the database.

Propagation on patterns

Attention

This section is still a work in progress.

Deep Tabular Learning

Attention

This section is still a work in progress.

Propagation on trees

Attention

This section is still a work in progress.

 _static/template_render.png
0.46,-0.52,0.27,0.1,0.2,-0.33,-0.23,0.97]

_static/sample_render.png
WeightedAtomNeuron:0:xor
val: 0
grad: 0
dim: []
fon: Tanh

:w0:[1, 8]:[0.46,-0.52,0.27,0.1,0.2,-0.33,-0.23,0.97]

WeightedRuleNeuron:2:{1,8}xor:-{8,2}xy.
val: [0,0,0,0, 0

grad: [0,0,0,0,0,

dim: [8,'1]

fon: Tanh

1:wl:[8, 2]
[0.76,0.88],
-0.45,-0.74],
-0.71,-0.95],
[0.09,0.93],
-0.79,0.25],
-0.18,0.55],
0.98,-0.03],
[0.49,0.47]
1

:<w3> [0,0] : xy
0,0]
: [0,0]
:[2,1]

nav.xhtml

 Table of Contents

 		
 PyNeuraLogic

_images/recursive_template.png
I<unitWeight> 1 [0.18,-0.99,0.25,-0,0.66,-0.01,0.61,-0.3]Y-0.62,-0.15,0.71,-0.15,0.98,-0.73,-0.35,-0.09]

xor_at(0) :- val at(0).> $a={1, 8} xor_at(Y) :- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y)>

[0.71,0.91,0.65,-0.34,-0.11,0.71,0.71,0.42]

_images/recursive_xor2.png
WeightedAtomNeuron:11:xor_at(1)
val: 0
grad: 0
dim: []
fon: Identity

0:a:[1, 8]:[-0.73,-0.5,0.66,-0.45,-0.47,0.41,-0.98,-0.15]

- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y).
0,0,

dim: [8, 1]
fon: Tanh

1:b:[8, 1]:[-0.56,-0.55,-0.96,0.63,-0.87,-0.21,0.72,0.05]\2:c:[8, 1]:[-0.15,0.96,0.39,-0.56,0.99,-0.16,-0.76,-0.56]

FactNeuron:0:w:<w4> 0 : val_at(1) FactNeuron:1:w:<w3> 0 : val_at(0)

val: 0 val: 0
grad: 0 grad: 0
dim: [] dim: []

fen: fen:

_images/recursive_xor3.png
WeightedAtomNeuron:15:xor_at(2)
val: 0
grad: 0
dim: []
fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:10:$a={1, 8} xor_at(Y) :- $b={8, 1} val_at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: [0,0,0,0,0,0,0,0]
,0,0,0,0,0]
dim: [8,'1]
fon: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:0:w:<w17> 1 : val_at(2) WeightedAtomNeuron:8:xor_at(1)

val: 1 val: 0
grad: 0 grad: 0
dim: [] dim: []

fon: fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:6:$a={1, 8} xor_at(Y) :- $b={8, 1} val_at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: 0,0

grad: [0,0,0,0,0,
dim: [8, 1]
fen: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:

:<wl16> 0 : val_at(1) FactNeuron:2:w:<w15> 0 : val_at(0)

val: 0 val: 0

grad: 0 grad: 0

dim: [] dim: []
fon: fon:

_images/recursive_xor4.png
WeightedAtomNeuron:36:xor_at(3)
val: 0
grad: 0
dim: []
fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:33:$a={1, 8} xor_at(Y) :- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: [0,0,0,0,0,0,0,0]
,0,0,0,0,0]
dim: [8, 1]
fen: Tanh

[8, 11:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 11:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:17:w:<w21> 0 : val_at(3) WeightedAtomNeuron:30:xor_at(2)

val: 0 val: 0
grad: 0 grad: 0
dim: [] dim: []

fon: fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:27:$a={1, 8} xor_at(Y) :- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: 0]

dim: [8,1]
fon: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:18:w:<w20> 1 : val_at(2) WeightedAtomNeuron:26:xor_at(1)

val: 1 val: 0
grad: 0 grad: 0
dim: [] dim: []

fon: fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:24:$a={1, 8} xor_at(Y) :- $b={8, 1} val_at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: [0,0,0,0,0,0,0,

181

fon: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:19:w:<w19> 0 : val_at(1) FactNeuron:20:w:<w18> 1 : val_at(0)

val: 0 val: 1
grad: 0 grad: 0
dim: [] dim: []

fen: fen:

_images/sample_render.png
WeightedAtomNeuron:0:xor
val: 0
grad: 0
dim: []
fon: Tanh

:w0:[1, 8]:[0.46,-0.52,0.27,0.1,0.2,-0.33,-0.23,0.97]

WeightedRuleNeuron:2:{1,8}xor:-{8,2}xy.
val: [0,0,0,0, 0

grad: [0,0,0,0,0,

dim: [8,'1]

fon: Tanh

1:wl:[8, 2]
[0.76,0.88],
-0.45,-0.74],
-0.71,-0.95],
[0.09,0.93],
-0.79,0.25],
-0.18,0.55],
0.98,-0.03],
[0.49,0.47]
1

:<w3> [0,0] : xy
0,0]
: [0,0]
:[2,1]

_images/template_render.png
0.46,-0.52,0.27,0.1,0.2,-0.33,-0.23,0.97]

_static/file.png

_static/minus.png

_static/k_regular_graph.png

_static/non_regular_graphs.png

_static/non_regular_molecules.png

_static/recursive_xor3.png
WeightedAtomNeuron:15:xor_at(2)
val: 0
grad: 0
dim: []
fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:10:$a={1, 8} xor_at(Y) :- $b={8, 1} val_at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: [0,0,0,0,0,0,0,0]
,0,0,0,0,0]
dim: [8,'1]
fon: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:0:w:<w17> 1 : val_at(2) WeightedAtomNeuron:8:xor_at(1)

val: 1 val: 0
grad: 0 grad: 0
dim: [] dim: []

fon: fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:6:$a={1, 8} xor_at(Y) :- $b={8, 1} val_at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: 0,0

grad: [0,0,0,0,0,
dim: [8, 1]
fen: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:

:<wl16> 0 : val_at(1) FactNeuron:2:w:<w15> 0 : val_at(0)

val: 0 val: 0

grad: 0 grad: 0

dim: [] dim: []
fon: fon:

_static/recursive_xor4.png
WeightedAtomNeuron:36:xor_at(3)
val: 0
grad: 0
dim: []
fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:33:$a={1, 8} xor_at(Y) :- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: [0,0,0,0,0,0,0,0]
,0,0,0,0,0]
dim: [8, 1]
fen: Tanh

[8, 11:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 11:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:17:w:<w21> 0 : val_at(3) WeightedAtomNeuron:30:xor_at(2)

val: 0 val: 0
grad: 0 grad: 0
dim: [] dim: []

fon: fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:27:$a={1, 8} xor_at(Y) :- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: 0]

dim: [8,1]
fon: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:18:w:<w20> 1 : val_at(2) WeightedAtomNeuron:26:xor_at(1)

val: 1 val: 0
grad: 0 grad: 0
dim: [] dim: []

fon: fon: Identity

:a:[1, 8]:[-1.3,-0.79,0.69,-0.38,-0.77,0.24,-0.91,-0.58]

WeightedRuleNeuron:24:$a={1, 8} xor_at(Y) :- $b={8, 1} val_at(Y), $c={8, 1} xor_at(X), *next(X, Y).
val: [0,0,0,0,0,0,0,

181

fon: Tanh

1:b:[8, 1]:[-1.18,-0.68,-1.2,0.66,-0.77,-0.04,0.82,-0.78]\2:c:[8, 1]:[-1.02,1.53,0.54,-0.46,1.66,-0.01,-0.54,-1.16]

FactNeuron:19:w:<w19> 0 : val_at(1) FactNeuron:20:w:<w18> 1 : val_at(0)

val: 0 val: 1
grad: 0 grad: 0
dim: [] dim: []

fen: fen:

_static/recursive_template.png
I<unitWeight> 1 [0.18,-0.99,0.25,-0,0.66,-0.01,0.61,-0.3]Y-0.62,-0.15,0.71,-0.15,0.98,-0.73,-0.35,-0.09]

xor_at(0) :- val at(0).> $a={1, 8} xor_at(Y) :- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y)>

[0.71,0.91,0.65,-0.34,-0.11,0.71,0.71,0.42]

_static/recursive_xor2.png
WeightedAtomNeuron:11:xor_at(1)
val: 0
grad: 0
dim: []
fon: Identity

0:a:[1, 8]:[-0.73,-0.5,0.66,-0.45,-0.47,0.41,-0.98,-0.15]

- $b={8, 1} val at(Y), $c={8, 1} xor_at(X), *next(X, Y).
0,0,

dim: [8, 1]
fon: Tanh

1:b:[8, 1]:[-0.56,-0.55,-0.96,0.63,-0.87,-0.21,0.72,0.05]\2:c:[8, 1]:[-0.15,0.96,0.39,-0.56,0.99,-0.16,-0.76,-0.56]

FactNeuron:0:w:<w4> 0 : val_at(1) FactNeuron:1:w:<w3> 0 : val_at(0)

val: 0 val: 0
grad: 0 grad: 0
dim: [] dim: []

fen: fen:

_static/plus.png

