
PyNeuraLogic

Lukáš Zahradník

Jul 15, 2022





CONTENTS

1 Installation 1

2 Quick Start 3

3 PyNeuraLogic Language 7

4 Problem Definition 11

5 Understanding Rules 15

6 Model Evaluation 19

7 Module Zoo 21

8 Advanced Usage 39

9 Examples 55

10 Benchmarks 57

11 Hypergraph Neural Networks 61

12 Heterophily Settings 63

13 neuralogic package 65

14 What is this good for? 83

15 How is it different from other GNN frameworks? 85

16 Supported backends 87

17 Examples 89

18 Papers 91

Python Module Index 93

Index 95

i



ii



CHAPTER

ONE

INSTALLATION

PyNeuraLogic can be easily installed from PyPI repository via pip install command.

Tip:

pip install neuralogic

1.1 Requirements

The PyNeuraLogic library requires Python >= 3.7 and Java >= 1.8 to be installed.

Additionally, if you plan to use one of the other supported backends, you have to install it manually.

In case you want to use visualization provided in the library, it is required to have Graphviz installed.

1

https://graphviz.org/download/


PyNeuraLogic

2 Chapter 1. Installation



CHAPTER

TWO

QUICK START

The PyNeuraLogic library serves for learning on structured data. This quick start guide will showcase one of its uses
on graph structures. Nevertheless, the library is directly applicable to more complex structures, such as relational
databases.

Tip: Check out one of the runnable Examples in Google Colab!

2.1 Graph Representation

Graphs are structures describing entities (vertices) and relations (edges) between them. In this guide, we will look into
how to encode graphs as inputs in different formats and how to learn on graphs.

2.1.1 Tensor Representation

In PyNeuraLogic, you can encode input graphs in various formats depending on your preferences. One such format is
a tensor format that you might already know from other GNN-focused frameworks and libraries. The input graph is
represented in a graph connectivity format, i.e., tensor of shape [2, num_of_edges]. The features are encoded via
tensor of shape [num_of_nodes, num_of_features].

Let’s consider a simple undirected graph shown above. We can simply encode the structure of the graph (edges) via
the edge_index property and nodes’ features via the x property of class Data, which encapsulates graphs’ data. We
can also assign a label to each node via the y property. The TensorDataset instance then holds a list of such graphs
tensor representations (Data instances) and can be fed into models

from neuralogic.dataset import Data, TensorDataset

data = Data(
edge_index=[

[0, 1, 1, 2, 2, 0],
[1, 0, 2, 1, 0, 2],

],
(continues on next page)

3



PyNeuraLogic

(continued from previous page)

x=[[0], [1], [-1]],
y=[[1], [0], [1]],
y_mask=[0, 1, 2],

)

dataset = TensorDataset(data=[data])

2.1.2 Logic Representation

The tensor representation works well for elementary use cases, but it can be quite limiting for more complex inputs. Not
everything can be easily aligned and fitted into a few tensors, and working with tensors can get quickly cumbersome.
That’s where the logic representation comes in with its high expressiveness.

The logic format is based on relational logic constructs to encode the input data, such as graphs. Those constructs are
mainly so-called facts, which are represented in PyNeuraLogic as Relation.predicate_name(...terms)[value].

The Dataset class contains a set of fact lists representing input graphs. The encoding of the previously shown simple
graph can look like the following:

from neuralogic.core import Relation
from neuralogic.dataset import Dataset

dataset = Dataset()

dataset.add_example([
Relation.edge(0, 1), Relation.edge(1, 2), Relation.edge(2, 0),
Relation.edge(1, 0), Relation.edge(2, 1), Relation.edge(0, 2),

Relation.node_feature(0)[0],
Relation.node_feature(1)[1],
Relation.node_feature(2)[-1],

])

As you can see, this encoding can be pretty lengthy, but at the same time, it gives us multiple benefits over the tensor
representation. For example, nothing stops you from adding edge features, such as Relation.edge(0, 1)[1.0], or
even introducing hypergraphs, such as Relation.edge(0, 1, 2) (read more about Hypergraph Neural Networks).

Note: We used the edge as the predicate name (Relation.edge) to represent the graph edges and the feature
(Relation.node_feature) to represent nodes’ features. This naming is arbitrary - edges and any other input data
can have any predicate name. In this documentation, we will stick to edge predicate name for representing edges and
feature predicate name for representing features.

To assign labels, we use queries. Labels can be assigned to basically anything - nodes, graphs, sub-graphs, etc. In this
example, we will label nodes, just like in the case of tensor format representation.

dataset.add_queries([
Relation.predict(0)[1],
Relation.predict(1)[0],
Relation.predict(2)[1],

])

4 Chapter 2. Quick Start



PyNeuraLogic

Note: The name Relation.predict refers to the output layer of our model, which we will define in the next section.

2.2 Model Definition

Models in PyNeuraLogic are not just particular computational graphs, as common in classic deep learning, but can be
viewed more generally as templates for (differentiable) computation. The template structure is encoded in the instance
of the Template class via relational rules or, for convenience, pre-defined modules (which are also expanded into said
rules, check out the Module Zoo for a list of modules).

from neuralogic.core import Template, Settings
from neuralogic.nn.module import GCNConv

template = Template()
template.add_module(

GCNConv(in_channels=1, out_channels=5, output_name="h0", feature_name="node_feature",
→˓ edge_name="edge")
)
template.add_module(

GCNConv(in_channels=5, out_channels=1, output_name="predict", feature_name="h0",␣
→˓edge_name="edge")
)

Here we defined two GCNConv layers via pre-defined modules. We further discuss template definition via the rule
format, which forms the core advantage of this framework, in the section of the documentation.

2.3 Evaluating Model

Now when we have our template defined, we have to get (build) the model from the template to be able to run training
and inference on it. We do that by calling the build method.

from neuralogic.core import Settings, Optimizer

settings = Settings(learning_rate=0.01, optimizer=Optimizer.SGD, epochs=100)
model = template.build(Settings())

The input dataset that we are trying to evaluate/train has to be also built. When we have the built dataset and model,
performing the forward and backward propagation is straightforward.

built_dataset = model.build_dataset(dataset)

model.train() # or model.test() to change the mode
output = model(built_dataset)

2.2. Model Definition 5



PyNeuraLogic

2.3.1 Evaluators

For faster prototyping, we have prepared evaluators which encapsulate helpers, such as training loop and evaluation.
Evaluators can then be customized via various settings wrapped in the Settings class.

from neuralogic.nn import get_evaluator
from neuralogic.core import Settings, Optimizer

settings = Settings(learning_rate=0.01, optimizer=Optimizer.SGD, epochs=100)
evaluator = get_evaluator(template, settings)

built_dataset = evaluator.build_dataset(dataset)
evaluator.train(built_dataset, generator=False)

6 Chapter 2. Quick Start



CHAPTER

THREE

PYNEURALOGIC LANGUAGE

The main feature of the PyNeuraLogic library is its custom declarative language (based on NeuraLogic) for describing
the structure of the learning problems, data and models. In PyNeuraLogic, the language is fully embedded in Python,
enabling users to utilize Python’s convenient modules and features.

The idea of using a custom language (following the logic programming paradigm) instead of the predefined modules,
as common in popular frameworks, is to achieve higher expressiveness, reduce the complexity of writing novel model
architectures, and reveal the underlying relational principles of the models.

This section introduces users to the language’s basic syntax, which is essential for understanding concepts presented in
other sections and using the library to its full potential.

3.1 Relations

Relations are fundamental building blocks of the PyNeuraLogic language. Each instance of a relation consists of four
parts - predicate name, an arbitrary number of terms, optional weight (or value), and optional modifier. Predicate name,
together with the “arity” (number of terms) the relation forms its unique signature.

Relations are created via object Relation that can be imported from neuralogic.core.

Tip: You can also create relations via R object, which is a shortcut of Relation.

3.1.1 Predicate name

Predicates serve as a descriptive name for the relations. Predicate names are case-sensitive and have to start with a lower-
case letter. Usually, relations with specific predicate names are created directly via Relation object (e.g., Relation.
my_rel creates a relation with the predicate name my_rel). For convenience, we can also use the Relation.get
method (e.g., Relation.get("my_rel")), which can be useful for generating relations.

from neuralogic.core import Relation

Relation.my_rel # Relation with a predicate name "my_rel"

(continues on next page)

7

https://github.com/GustikS/NeuraLogic


PyNeuraLogic

(continued from previous page)

for i in range(5):
# Relations with predicate names "my_rel_0", ..., "my_rel_4"
Relation.get(f"my_rel_{i}")

Note: Prepending the predicate name with an underscore (_) will make the relation “hidden” (e.g., Relation.
hidden.my_rel is equal to Relation._my_rel). You can read more about modifiers, such as “hidden”, in the
Modifiers section.

3.1.2 Terms

Terms are an optional list of constants and/or logic variables.

• Constants are either numeric values (floats, integers) or string values with a lower-cased first letter. We can also
define a constant via neuralogic.core.Term, which converts the provided value into a valid constant (string)
for us.

from neuralogic.core import Term, Relation

Relation.my_rel # A relation with NO terms, also called a "proposition" in logic
Relation.my_rel(1.0) # A relation with one constant term 1.0
Relation.my_rel(Term.my_term, "string_term") # A relation with two constant terms "my_
→˓term" and "string_term"
Relation.my_rel(1.0, Term.My_Term) # A relation with two constant terms 1.0 and "my_
→˓term"

• Variables are capitalized string values. We can, similarly to constants, utilize helper neuralogic.core.Var,
which converts the provided value into a valid variable (string) for us.

from neuralogic.core import Var, Relation

Relation.my_rel(Var.X) # A relation with one variable "X"
Relation.my_rel(Var.x, "Y") # A relation with two variable terms "X" and "Y"

Relations with logical variables express general patterns, which is essential for encoding deep relational models, such
as GNNs.

Note: We call relation “ground” if all of its terms are constants (no variables). These are essentially specific (logical)
statements, or facts, commonly used to encode the data and particular observations.

8 Chapter 3. PyNeuraLogic Language



PyNeuraLogic

3.1.3 Weights

On top of classic relational logic programming, in PyNeuraLogic, the relations can be additionally associated with
weights. A relation’s weight is optional and servers as a learnable parameter. The weight itself can be defined in the
following ways:

• Scalar value defining a learnable scalar parameter initialized to a specific value.

Relation.my_rel[0.5] # Scalar weight initialized to 0.5

• Vector value defining a learnable vector parameter initialized to a specific value.

Relation.my_rel[[1.0, 0.0, 1.0]] # Vector weight initialized to [1.0, 0.0, 1.0]

• Matrix value defining a learnable matrix parameter initialized to a specific value.

Relation.my_rel[[[1, 0], [0, 1]]] # Matrix weight initialized to [[1, 0], [0, 1]]

Tip: Matrix and vector values can also be in the form of NumPy arrays.

Instead of defining particular values for the parameters, we can also choose to specify merely the dimensionality of it
instead. Here, each element of the parameter represents the size of the corresponding dimension. The initialization of
the values in this case is sampled from a distribution determined by the Settings object.

Relation.my_rel[2,] # Specification of a randomly initialized weight vector of length 2
Relation.my_rel[3, 3] # Specification of a randomly initialized 3x3 weight matrix

Warning: Notice the difference between Relation.my_rel[2] and Relation.my_rel[2,] where the first one
represents a particular scalar weight with value “2”, while the latter represents a randomly initialized weight vector
of length 2.

Named Weights

Weight sharing is at the heart of modelling with PyNeuraLogic, where all the (ground) instances of a relation will share
its associated parameters. However, you can also choose to share a single weight across multiple relations. This can be
achieved by labeling the weight with some name, such as:

# Sharing a weight (2x2 matrix weight)
Relation.my_rel["shared_weight": 2, 2]
Relation.another_rel["shared_weight": 2, 2]

# Sharing a weight (vector weight)
Relation.my_rel["my_weight": 2,]
Relation.another_rel["my_weight": 2]

3.1. Relations 9

https://numpy.org/


PyNeuraLogic

3.1.4 Modifiers

Predicate names are generally arbitrary, with no particular meaning other than the user-defined one. However, by
including a modifier in the definition of a relation, we may utilize some of the extra pre-defined predicates with special
built-in functionality.

More about individual modifiers can be read in Modifiers.

3.2 Rules

Relation.h <= (Relation.b_one, Relation.b_n)

Rules are the core concept in PyNeuraLogic for describing the architectures of the models by defining templates for
their computational graphs. Each rule consists of two parts - the head and the body. The head is an arbitrary relation
followed by an implication (<=) and subsequently the body formed from a tuple of n relations.

When there is only one relation in the body, we can omit the tuple and insert the relation directly.

Relation.h <= Relation.b

Such a rule can be then read as “The relation (proposition) ‘h’ is implied by the relation (proposition) ‘b’”

3.2.1 Metadata

The rules have some (default) properties that influence their translation into the computational graphs (models), such
as activation and aggregation functions. These properties can be modified, per rule, by attaching a Metadata instance
to the rule.

from neuralogic.core import Metadata, Activation, Aggregation

(Relation.h <= (Relation.b_one, Relation.b_n)) | Metadata(activation=Activation.RELU,␣
→˓aggregation=Aggregation.AVG)

# or, for short, just
(Relation.h <= (Relation.b_one, Relation.b_n)) | [Activation.RELU, Aggregation.AVG]

For example, with the construct above, we created a new rule with a specified activation function (relu) and aggregation
function (avg).

10 Chapter 3. PyNeuraLogic Language



CHAPTER

FOUR

PROBLEM DEFINITION

To approach relational machine learning problems with the PyNeuraLogic library in its full potential, we generally
divide each learning scenario into (i) learning examples, (ii) queries, and (iii) a learning template. A set of learning
examples together with the queries form a learning dataset. The learning template then constitues a “lifted” model
architecture, i.e. a prescription for unfolding (differentiable) computational graphs.

4.1 Dataset

The dataset object holds factual information about the problem and is divided into two parts - (i) examples and (ii)
queries.

Attention: In the context of examples and queries, the “weights” of the relations are, in fact, not learnable param-
eters but concrete values that serve as inputs (example features) or target outputs (query labels).

This means that it is not possible to use the dimensionality definition for the weight (value) in this case, as it does
not represent a concrete value.

4.1.1 Examples

An example describes a specific learning instance, such as a graph, generally encoded through the language of ground
relations/facts and rules. Intuitively, a learning example can be seen as the input to the model defined by a template.

Examples can be loaded from files in various formats, or encoded directly in Python in the NeuraLogic language. For
instance, a complete graph with three nodes and some features can be encoded as:

from neuralogic.core import Relation, Dataset

dataset = Dataset()

dataset.add_example([
Relation.edge(1, 2), Relation.edge(2, 1), Relation.edge(1, 3),
Relation.edge(3, 1), Relation.edge(2, 3), Relation.edge(3, 2),

Relation.feature(1)[0],
Relation.feature(2)[1],
Relation.feature(3)[-1],

])

11



PyNeuraLogic

4.1.2 Queries

Queries are relations (facts) corresponding to the desired outputs of the learning model/template. These are commonly
associated with (non-learnable) weights determining the expected values of the target (relation) labels, given some
input example(s).

We might, for example, want to learn the output values of the unary relation (property) Relation.h of the entity anna
to be 0, and for the entity elsa to be 1. This might be expressed like this:

dataset.add_queries([
Relation.h('anna')[0],
Relation.h('elsa')[1],

])

Note that, in constrast to classic machine learning labels, queries are not restricted to a single target “output” in the
template, such as the “output layer” in classic neural models. We can thus ask different completely arbitray queries at
the same time:

dataset.add_queries([
Relation.h('anna')[0],
Relation.h('elsa')[1],
Relation.friend('anna','elsa')[1],

])

Also, the associated labels can be of arbitrary shapes. We can thus, for example, combine a query Relation.a[0]
with a scalar label with a query Relation.b[[1, 0, 1]] with a vector label, each associated with a different part of
the learning template.

Note: Queries are valued ground relations, but we don’t have to define the value explicitly. If the value is not present,
the default value (1.0) is used as the label. This is useful, e.g., for queries outside the learning phase, where the labels
are not needed/known.

A single learning example may then be associated with a single query, as common in classic supervised machine
learning, or with multiple queries, as common e.g. in knowledge-base completion or collective classification tasks.

Tip: If the learning example does not change and is the same for every query, we can simly define only one example,
and it will be reused for each query.

4.2 Template

The template (Template) is a set of rules that encode the lifted model architecture. Intuitively, this is somewhat similar
to composing modules in the common deep learning frameworks, but more versatile. The versatility follows from the
declarative nature of the rules, which can be highly abstract and expressive, just like the modules, yet directly reveal
an interface to the underlying lower-level principles of the module’s computation.

12 Chapter 4. Problem Definition



PyNeuraLogic

4.2.1 Interpretation of Rules

TODO: Understanding rules

4.2. Template 13



PyNeuraLogic

14 Chapter 4. Problem Definition



CHAPTER

FIVE

UNDERSTANDING RULES

In PyNeuraLogic, describing a learning model differs from conventional deep learning frameworks. Here, instead of
putting together a sequence of modules and operations on numeric tensors, we define a model “template” formed from
rules operating on relations. This template is then used to unfold differentiable computational graphs, which may be
tailored for each (relational) learning sample.

But how exactly do these rules translate into computational graphs?

The semantics of this process follows directly from logical inference, and is described in detail in the paper(s) on Lifted
Relational Neural Networks However, let us skip the scientific notions here and take a direct look at the process through
a simple example instead!

Consider the following relatively simple graph with arbitrarily picked node ids. Usually, we would encode the graph
either as an adjacency matrix, or simply a list of edges with two vectors - [[sources], [destinations]]. The latter
representation for graphs is also available in PyNeuraLogic for convenience, but we will stick with the more general
relational representation here, and describe the graph edges as R.edge(<source>, <destination>), that is:

[
R.edge(3, 1), R.edge(2, 1), R.edge(4, 3), R.edge(4, 1),
R.edge(1, 3), R.edge(1, 2), R.edge(3, 4), R.edge(1, 4),

]

And just like that, we encoded our example input graph with bidirectional edges. Let us now define few example
templates to operate upon this graph, and dive into how they are being compiled into computational graphs.

5.1 An Entry Template

R.h(V.X) <= R.edge(V.X, V.Y)

The first template is relatively simple; it contains one rule with only one body relation R.edge(V.X, V.Y). The rule
roughly translates into plain English as

“To compute representation h of any entity X, aggregate all values of relations R.edge where the entity X
is the “source” node of the relation edge.”

So, for example, for a query R.h(1), there are exactly three instances of the edge relation that satisfy the template rule
- R.edge(1, 2), R.edge(1, 3), and R.edge(1, 4), corresponding to the three neighbors of the node 1. So in the
end, we end up with a computational graph like the one below. The computation in the graph goes from the bottom
(input) level up to the output level, which corresponds to our query.

15

https://arxiv.org/abs/2007.06286
https://arxiv.org/abs/2007.06286


PyNeuraLogic

Note: Notice that the input value of all the edge relations is 1. This value has been set implicitly because we didn’t
provide any.

This visualization renders only the graph’s structure without specification of the operations on the values being passed
through. However, every node in this graph can be associated with some function.

In this case, let us focus on the only node with multiple inputs, highlighted with the magenta color. This node is the
so-called aggregation node that aggregates all of its inputs through some aggregation function (AVG by default) to
produce a single output value.

value = AVG (value(...edge(1,2)), value(...edge(1,3)), value(...edge(1,4)))

Note how this functionality can be viewed as a basis for the “neighborhood aggregation” operation commonly utilized
in Graph Neural Networks.

Note: What if we have a node without any edge and want to compute the R.h? We will get an exception because we
cannot satisfy the rule. Later in this tutorial, we will look at solutions to such a scenario.

5.2 Multiple Body Relations

Our first template was very limited in what we were able to express. We will often find ourselves declaring rules with
multiple body relations to capture more complicated computational patterns. As an example of such a template rule,
we could introduce a feature relation for the nodes and utilize it in the rule. Also, we will introduce weights to the rule
at the same time.

R.h(V.X)["a": 1,] <= (R.edge(V.X, V.Y)["b": 1,], R.feature(V.Y)["c": 1,])

Note: We used named weights here to clarify how the weights are being mapped into the computational graph.
However you can normally omit these names.

Now, let us extend our input data (the encoding of the input graph) with some node features correspondingly. For
simplicity, each feature will be a simple scalar value, for example:

R.feature(1)[0.2], R.feature(2)[0.3], R.feature(3)[0.4], R.feature(4)[0.5]

Now, for the same query R.h(1), we will end up with the computational graph below. Note how the bottom layer
expanded with additional inputs (R.feature), and how the weights came upe associated with the corresponding edges.

Let us now focus on a different “level” in the computational graph. This time, we highlight the nodes that correspond
to the rule’s body (these were present in the previous example, too, however they were not so interesting as there was
only one body relation at the input). In this case of a multitude of relations in the body of the rule, these again need to
be combined somehow. By default, this operation is a weighted summation of the inputs with a nonlinearity (tanh) on
top. Thus, for example, the value of the leftmost magenta node will be calculated as follows:

value = tanh ( (0.3 * c) + (1 * b) )

16 Chapter 5. Understanding Rules



PyNeuraLogic

5.3 Multiple Rules

Now that we understand how multiple relations in the body of a rule are combined, and how the different instantiations
of the body are aggregated, let us look at a scenario with two different rules with the same head relation.

R.h(V.X) <= (R.edge(V.X, V.Y), R.feature(V.Y)),
R.h(V.X) <= R.feature(V.X),

Up until now, to successfully derive R.h, the nodes were required to have edges. To mitigate this, we can add a second
rule which will be satisfied for any node with some features. Let us take a look at how the mapping changed for this
template on the same query R.h(1)

Now, this additional rule introduced the rightmost branch highlighted with the magenta color. Note that this branch
has the same structure as the left one, i.e. there is an aggregation node and node that “combines” the body relations.
Nevertheles, in this case, there isn’t much to combine nor aggregate.

Another interesting point to note here is the operation of the topmost node that corresponds to the query, which now has
multiple inputs, too. Consequently, these need to be combined somehow which, by default, is a (weighted) summation
again.

5.4 Graph Readout

Up until now, we have been working with queries on top of one entity - node. What if we wanted to compute the value
of relation R.h for all available nodes and then somehow aggregate them into one value, i.e., do a “graph readout”?

For that, we can yet again leverage the elegant expressiveness of relational logic. We can simply state, “Aggregate all
values of the relation R.h for all entities X that satisfy the relation.” Let us use a different query, R.q, for the readout in
this case.

R.h(V.X) <= (R.edge(V.X, V.Y), R.feature(V.Y)),
R.h(V.X) <= R.feature(V.X),
R.q <= R.h(V.X),

In this case, there are no new operations to be discussed in the computational graph shown below. All of the R.h node
computation will be unfolded into their respective subgraphs, e.g., the R.h(1) node will be unfolded to the graph from
the previous example above.

Note: Note that the computational subgraphs for the individual nodes here will not be completely separate, i.e. the
computational graph will not be a tree anymore, since the nodes share some of their neighbors in the input graph, too.

5.3. Multiple Rules 17



PyNeuraLogic

5.5 Activation and Aggregation functions

So far we focused solely on the structure of the computational graph, without specificying the indivudal opera-
tions/functions associated with the nodes. Let us now demonstrate how to customize these. For that, let is consider
again the graph/template from the first (entry) example.

R.h(V.X) <= R.edge(V.X, V.Y)

If we would like to change the aggregation function of the rule, i.e. how all the values of the edges of each node are
being aggregated, we can append that information to the rule as

(R.h(V.X) <= R.edge(V.X, V.Y)) | [Aggregation.MAX]

Should we want to further change the non-linear activation of the rule nodes, combining the rule body relations we
would add:

(R.h(V.X) <= R.edge(V.X, V.Y)) | [Aggregation.MAX, Activation.SIGMOID]

Finally, to change the activation function of the head of the rule in the case with multiple rules with the same head:

R.h(V.X) <= (R.edge(V.X, V.Y), R.feature(V.Y)),
R.h(V.X) <= R.feature(V.X),

we would append that information to the head relation itself as:

R.h / 1 | [Activation.SIGMOID]

Note: The / 1 here defines the “arity” of the relation, which is necessary to uniquely identify the relation, since we
can have multiple relations of the same name with different arities (and activation functions).

18 Chapter 5. Understanding Rules



CHAPTER

SIX

MODEL EVALUATION

6.1 Model Building

When we have the template, examples, and queries ready, we need to ‘compile’ them together to retrieve a model that
can be trained and evaluated.

The ‘compilation’ is done in two steps. Firstly, we retrieve a model instance for the specified backend.

from neuralogic.core import Backend, Settings

settings = Settings()
model = template.build(settings)

Then we can ‘build’ the examples and queries (dataset), yielding a multitude of computational graphs to be trained.

built_dataset = model.build_dataset(dataset)

6.2 Saving and Loading Model

When our model is trained, or we want to persist the model’s state (e.g., make a checkpoint), we can utilize the model
instance method state_dict() (or parameters()). The method puts all parameters’ values into a dictionary that
can be later saved (e.g., in JSON or in binary) or somehow manipulated.

When we want to load a state into our model, we can then simply pass the state into load_state_dict() method.

Note: Evaluators offer the same interface for saving/loading of the model.

6.3 Utilizing Evaluators

Writing custom training loops and handling different backends can be cumbersome and repetitive. The library offers
‘evaluators’ that encapsulate the training loop and testing evaluation. Evaluators also handle other responsibilities, such
as building datasets.

from neuralogic.nn import get_evaluator

evaluator = get_evaluator(template, settings, Backend.JAVA)

19



PyNeuraLogic

Once you have an evaluator, you can evaluate or train the model on a dataset. The dataset doesn’t have to be pre-built,
as in the case of classical evaluation - the evaluator handles that for you.

Note: If it is used more than once, it is more efficient to pass a pre-built dataset into the evaluator (this will prevent
redundant dataset building).

6.3.1 Settings Instance

The Settings instance contains all the settings used to customize the behavior of different parts of the library.

Most importantly, it affects the behavior of the model building (e.g., specify default rule/relation activation functions),
evaluators (e.g., error function, number of epochs, learning rate, optimizer), and the model itself (e.g., initialization of
the learnable parameters).

from neuralogic.core import Settings, Optimizer, Initializer
from neuralogic.nn.init import Uniform

Settings(
initializer=Uniform(),
optimizer=Optimizer.SGD,
learning_rate=0.1,
epochs=100,

)

In the example above, we define settings to ensure that initial values of learnable parameters (of the model these settings
are used for) are sampled from the uniform distribution. We also set properties utilized by evaluators: the number of
epochs (100) and the optimizer, which is set to Stochastic gradient descent (SGD) with a learning rate of 0.1.

6.3.2 Evaluator Training/Testing Interface

The evaluator’s basic interface consists of two methods - train and test for training on a dataset and evaluating
on a dataset, respectively. Both methods have the same interface and are implemented in two modes - generator and
non-generator.

The generator mode (default mode) yields a tuple of two elements (total loss and number of instances/samples) per
each epoch. This mode can be useful when we want to, for example, visualize, log or do some other manipulations in
real-time during the training (or testing).

for total_loss, seen_instances in neuralogic_evaluator.train(dataset):
pass

The non-generator mode, on the other hand, returns only a tuple of metrics from the last epoch.

results = neuralogic_evaluator.train(dataset, generator=False)

20 Chapter 6. Model Evaluation



CHAPTER

SEVEN

MODULE ZOO

Welcome to our module zoo, the place where we discuss all pre-defined modules and outline how they are mapped to
logic programs.

All modules listed here are defined in the neuralogic.nn.module package, and their usage is quite similar to the
usage of regular rules. You can add them to your template via the += operator or add_module method, e.g.:

from neuralogic.nn.module import GCNConv

template += GCNConv(...)
# or
template.add_module(GCNConv(...))

Right after adding a module into a template, it is expanded into logic form - rules. This allows you to build upon
pre-defined modules and create new variations by adding your own custom rules or just mixing modules together.

7.1 Pre-defined Modules

GNN

General Blocks

Meta

Module Edge formats
GCNConv R.<edge_name>(<source>, <target>)
SAGEConv R.<edge_name>(<source>, <target>)
GINConv R.<edge_name>(<source>, <target>)
RGCNConv R.<edge_name>(<source>, <relation>, <target>) or R.<relation>(<source>,

<target>)
TAGConv R.<edge_name>(<source>, <target>)
GATv2ConvR.<edge_name>(<source>, <target>)
SGConv R.<edge_name>(<source>, <target>)
APPNPConvR.<edge_name>(<source>, <target>)
ResGatedGraphConvR.<edge_name>(<source>, <target>)

Module
Linear
MLP

21



PyNeuraLogic

Recurrent/Recursive module
RvNN
RNN
GRU
LSTM

Pooling module
Pooling
SumPooling
AvgPooling
MaxPooling

Module
MetaConv
MAGNNMean
MAGNNLinear

7.2 GNN Modules

class GCNConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str,
activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Graph Convolutional layer from “Semi-supervised Classification with Graph Convolutional Networks”. Which
can be expressed as:

x′
𝑖 = 𝑎𝑐𝑡(W · 𝑎𝑔𝑔𝑗∈𝒩 (𝑖)(x𝑗))

Where act is an activation function, agg aggregation function and W is a learnable parameter. This equation is
translated into the logic form as:

(R.<output_name>(V.I)[<W>] <= (R.<feature_name>(V.J), R.<edge_name>(V.J, V.I))) | [
→˓<aggregation>, Activation.IDENTITY]
R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as GCNConv(2, 3, "h1", "h0", "_edge")) is as fol-
lows:

(R.h1(V.I)[3, 2] <= (R.h0(V.J), R._edge(V.J, V.I)) | [Aggregation.SUM, Activation.
→˓IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

Parameters

22 Chapter 7. Module Zoo

https://arxiv.org/abs/1609.02907


PyNeuraLogic

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.SUM

class SAGEConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str,
activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

GraphSAGE layer from “Inductive Representation Learning on Large Graphs”. Which can be expressed as:

x′
𝑖 = 𝑎𝑐𝑡(W1x𝑖 +W2 · 𝑎𝑔𝑔𝑗∈𝒩 (𝑖)(x𝑗)))

Where act is an activation function, agg aggregation function and W ’s are learnable parameters. This equation
is translated into the logic form as:

(R.<output_name>(V.I)[<W1>] <= (R.<feature_name>(V.J), R.<edge_name>(V.J, V.I))) | [
→˓<aggregation>, Activation.IDENTITY]
(R.<output_name>(V.I)[<W2>] <= R.<feature_name>(V.I)) | [Activation.IDENTITY]
R.<output_name> / 1 | [<activation>]

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.AVG

class GINConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str,
activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

7.2. GNN Modules 23

https://arxiv.org/abs/1706.02216


PyNeuraLogic

class RGCNConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name:
~typing.Optional[str], relations: ~typing.List[str], activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Relational Graph Convolutional layer from Modeling Relational Data with Graph Convolutional Networks.
Which can be expressed as:

x′
𝑖 = 𝑎𝑐𝑡(W0 · x𝑖 +

∑︁
𝑟∈ℛ

𝑎𝑔𝑔𝑗∈𝒩𝑟(𝑖)(Wr · x𝑗))

Where act is an activation function, agg aggregation function (by default average), 𝑊0 is a learnable root pa-
rameter and 𝑊𝑟 is a learnable parameter for each relation.

The first part of the equation that is “W0 · x𝑖” can be expressed in the logic form as:

R.<output_name>(V.I) <= R.<feature_name>(V.I)[<W0>]

Another part of the equation that is “𝑎𝑔𝑔𝑗∈𝒩𝑟(𝑖)(Wr · x𝑗)” can be expressed as:

R.<output_name>(V.I) <= (R.<feature_name>(V.J)[<Wr>], R.<edge_name>(V.J, relation,␣
→˓V.I))

where “relation” is a constant name, or as:

R.<output_name>(V.I) <= (R.<feature_name>(V.J)[<Wr>], R.<relation>(V.J, V.I))

The outer summation, together with summing it with the first part, is handled by aggregation of all rules with the
same head (and substitution).

Examples

The whole computation of this module (parametrized as RGCNConv(1, 2, "h1", "h0", "_edge",
["sibling", "parent"])) is as follows:

metadata = Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.AVG)

(R.h1(V.I) <= R.h0(V.I)[2, 1]) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R._edge(V.J, sibling, V.I))) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R._edge(V.J, parent, V.I))) | metadata
R.h1 / 1 [Activation.IDENTITY]

Module parametrized as RGCNConv(1, 2, "h1", "h0", None, ["sibling", "parent"]) translates
into:

metadata = Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.AVG)

(R.h1(V.I) <= R.h0(V.I)[2, 1]) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R.sibling(V.J, V.I))) | metadata
(R.h1(V.I) <= (R.h0(V.J)[2, 1], R.parent(V.J, V.I))) | metadata
R.h1 / 1 [Activation.IDENTITY]

Parameters

24 Chapter 7. Module Zoo

https://arxiv.org/abs/1703.06103


PyNeuraLogic

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (Optional[str]) – Edge predicate name to use for neighborhood relations.
When None, elements from relations are used instead.

• relations (List[str]) – List of relations’ names

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.SUM

class TAGConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, k: int =
2, activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Topology Adaptive Graph Convolutional layer from “Topology Adaptive Graph Convolutional Networks”.
Which can be expressed as:

x′
𝑖 = 𝑎𝑐𝑡(

𝐾∑︁
𝑘=0

W𝑘 · 𝑎𝑔𝑔𝑗∈𝒩𝑘(𝑖)(x𝑗))

Where act is an activation function, agg aggregation function, Wk are learnable parameters and 𝒩 𝑘(𝑖) denotes
nodes that are k hops away from the node i. This equation is translated into the logic form as:

This equation is translated into the logic form as:

(R.<output_name>(V.I0)[<W0>] <= R.<feature_name>(V.I0)) | [<aggregation>,␣
→˓Activation.IDENTITY]
(R.<output_name>(V.I0)[<W1>] <= (R.<feature_name>(V.I1), R.<edge_name>(V.I1, V.
→˓I0))) | [<aggregation>, Activation.IDENTITY]
(R.<output_name>(V.I0)[<W2>] <= (R.<feature_name>(V.I2), R.<edge_name>(V.I1, V.I0),␣
→˓R.<edge_name>(V.I2, V.I1)) | [<aggregation>, Activation.IDENTITY]
...
(R.<output_name>(V.I0)[<Wk>] <= (R.<feature_name>(V.I<k>), R.<edge_name>(V.I1, V.
→˓I0), ..., R.<edge_name>(V.I<k>, V.I<k-1>)) | [<aggregation>, Activation.IDENTITY]
R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as TAGConv(1, 2, "h1", "h0", "_edge")) is as fol-
lows:

(R.h1(V.I0)[2, 2] <= R.h0(V.I0)) | [Aggregation.SUM, Activation.IDENTITY]
(R.h1(V.I0)[2, 1] <= (R.h0(V.I1), R._edge(V.I1, V.I0)) | [Aggregation.SUM,␣
→˓Activation.IDENTITY]
(R.h1(V.I0)[2, 1] <= (R.h0(V.I2), R._edge(V.I1, V.I0), R._edge(V.I2, V.I1)) |␣
→˓[Aggregation.SUM, Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

7.2. GNN Modules 25

https://arxiv.org/abs/1710.10370


PyNeuraLogic

Module parametrized as TAGConv(1, 2, "h1", "h0", "_edge", 1) translates into:

(R.h1(V.I0)[2, 1] <= R.h0(V.I0)) | [Aggregation.SUM, Activation.IDENTITY]
(R.h1(V.I0)[2, 1] <= (R.h0(V.I1), R._edge(V.I1, V.I0)) | [Aggregation.SUM,␣
→˓Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• k (int) – Number of hops. Default: 2

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.SUM

class GATv2Conv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str,
share_weights: bool = False, activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>)

GATv2 layer from “How Attentive are Graph Attention Networks?”.

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• share_weights (bool) – Share weights in attention. Default: False

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

class SGConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, edge_name: str, k: int =
1, activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Simple Graph Convolutional layer from “Simplifying Graph Convolutional Networks”. Which can be expressed
as:

x′
𝑖 = 𝑎𝑐𝑡(W · 𝑎𝑔𝑔𝑗∈𝒩𝑘(𝑖)(x𝑗))

Where act is an activation function, agg aggregation function, W is a learnable parameter and 𝒩 𝑘(𝑖) denotes
nodes that are k hops away from the node i. This equation is translated into the logic form as:

26 Chapter 7. Module Zoo

https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/1902.07153


PyNeuraLogic

(R.<output_name>(V.I)[<W>] <= (
R.<feature_name>(V.I<k>),
R.<edge_name>(V.I<1>, V.I<0>), R.<edge_name>(V.I<2>, V.I<1>), ..., R.<edge_name>

→˓(V.I<k>, V.I<k-1>),
)) | [<aggregation>, Activation.IDENTITY]

R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as SGConv(2, 3, "h1", "h0", "_edge", 2)) is as
follows:

(R.h1(V.I0)[3, 2] <= (R.h0(V.I2), R._edge(V.I1, V.I0), R._edge(V.I2, V.I1))) |␣
→˓[Activation.IDENTITY, Aggregation.SUM]
R.h1 / 1 | [Activation.IDENTITY]

Module parametrized as SGConv(2, 3, "h1", "h0", "_edge", 1) translates into:

(R.h1(V.I0)[3, 2] <= (R.h0(V.I1), R._edge(V.I1, V.I0))) | [Activation.IDENTITY,␣
→˓Aggregation.SUM]
R.h1 / 1 | [Activation.IDENTITY]

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• k (int) – Number of hops. Default: 1

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.SUM

class APPNPConv(output_name: str, feature_name: str, edge_name: str, k: int, alpha: float, activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Approximate Personalized Propagation of Neural Predictions layer from “Predict then Propagate: Graph Neural
Networks meet Personalized PageRank”. Which can be expressed as:

x0
𝑖 = x𝑖

x𝑘
𝑖 = 𝛼 · x0

𝑖 + (1− 𝛼) · 𝑎𝑔𝑔𝑗∈𝒩 (𝑖)(x
𝑘−1
𝑗 )

x′
𝑖 = 𝑎𝑐𝑡(x𝐾

𝑖 )

7.2. GNN Modules 27

https://arxiv.org/abs/1810.05997
https://arxiv.org/abs/1810.05997


PyNeuraLogic

Where act is an activation function and agg aggregation function.

The first part of the second equation that is “𝛼 · x0
𝑖 ” is expressed in the logic form as:

R.<output_name>__<k>(V.I) <= R.<feature_name>(V.I)[<alpha>].fixed()

The second part of the second equation that is “(1− 𝛼) · 𝑎𝑔𝑔𝑗∈𝒩 (𝑖)(x
𝑘−1
𝑗 )” is expressed as:

R.<output_name>__<k>(V.I) <= (R.<output_name>__<k-1>(V.J)[1 - <alpha>].fixed(), R.
→˓<edge_name>(V.J, V.I))

Examples

The whole computation of this module (parametrized as APPNPConv("h1", "h0", "_edge", 3, 0.1,
Activation.SIGMOID)) is as follows:

metadata = Metadata(activation=Activation.IDENTITY, aggregation=Aggregation.SUM)

(R.h1__1(V.I) <= R.h0(V.I)[0.1].fixed()) | metadata
(R.h1__1(V.I) <= (R.h0(V.J)[0.9].fixed(), R._edge(V.J, V.I))) | metadata
R.h1__1/1 [Activation.IDENTITY]

(R.h1__2(V.I) <= <0.1> R.h0(V.I)) | metadata
(R.h1__2(V.I) <= (<0.9> R.h1__1(V.J), R._edge(V.J, V.I))) | metadata
R.h1__2/1 [Activation.IDENTITY]

(R.h1(V.I) <= <0.1> R.h0(V.I)) | metadata
(R.h1(V.I) <= (<0.9> R.h1__2(V.J), R._edge(V.J, V.I))) | metadata
R.h1 / 1 [Activation.SIGMOID]

Parameters

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• k (int) – Number of iterations

• alpha (float) – Teleport probability

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.SUM

class ResGatedGraphConv(in_channels: int, out_channels: int, output_name: str, feature_name: str,
edge_name: str, gating_activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

28 Chapter 7. Module Zoo



PyNeuraLogic

Residual Gated Graph Convolutional layer from “Residual Gated Graph ConvNets”. Which can be expressed as:

x′
𝑖 = 𝑎𝑐𝑡(W1x𝑖 + 𝑎𝑔𝑔𝑗∈𝒩 (𝑖)(𝜂𝑖,𝑗 ⊙W2x𝑗))

𝜂𝑖,𝑗 = 𝑔𝑎𝑡𝑖𝑛𝑔_𝑎𝑐𝑡(W3x𝑖 +W4x𝑗)

Where act is an activation function, agg aggregation function, gating_act is a gating activation function and 𝑊𝑛

are learnable parameters. This equation is translated into the logic form as:

(R.<output_name>__gate(V.I, V.J) <= (R.<feature_name>(V.I)[<W>], R.<feature_name>(V.
→˓J)[<W>])) | [Activation.IDENTITY]
R.<output_name>__gate / 2 | [<activation>]

(R.<output_name>(V.I) <= R.<feature_name>(V.I)[<W>]) | [Activation.IDENTITY]
(R.<output_name>(V.I) <= (

R.<output_name>__gate(V.I, V.J), R.<feature_name>(V.J)[<W>], R.<edge_name>(V.J,␣
→˓V.I))
) | Metadata(activation="elementproduct-identity", aggregation=<aggregation>)

R.<output_name> / 1 | [<activation>]

Examples

The whole computation of this module (parametrized as ResGatedGraphConv(1, 2, "h1", "h0",
"_edge")) is as follows:

metadata = Metadata(activation="elementproduct-identity", aggregation=Aggregation.
→˓SUM)

(R.h1__gate(V.I, V.J) <= (R.h0(V.I)[2, 1], R.h0(V.J)[2, 1])) | [Activation.IDENTITY]
R.h1__gate / 2 | [Activation.SIGMOID]

(R.h1(V.I) <= R.h0(V.I)[2, 1]) | [Activation.IDENTITY]
(R.h1(V.I) <= (R.h1__gate(V.I, V.J), R.h0(V.J)[2, 1], R._edge(V.J, V.I))) | metadata
R.h1 / 1 | [Activation.IDENTITY]

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• edge_name (str) – Edge predicate name to use for neighborhood relations.

• gating_activation (Activation) – Gating activation function. Default: Activation.
SIGMOID

• activation (Activation) – Activation function of the output. Default: Activation.
IDENTITY

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.SUM

7.2. GNN Modules 29

https://arxiv.org/abs/1711.07553


PyNeuraLogic

7.3 General Block Modules

class Linear(in_channels: int, out_channels: int, output_name: str, input_name: str, activation:
~neuralogic.core.constructs.function.Function = <neuralogic.core.constructs.function.Activation
object>, arity: int = 1)

Apply linear transformation on the input. Can be expressed as:

ℎ𝑖0,..,𝑖𝑛 = 𝑊 · 𝑥𝑖0,..,𝑖𝑛

Where 𝑥 is the input, 𝑊 ∈ 𝑅(𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠×𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) is a learnable parameter, and 𝑛 is the arity of the input
and output.

It is also possible to attach non-linearity via the activation parameter and compute:

ℎ𝑖0,..,𝑖𝑛 = 𝑎𝑐𝑡(𝑊 · 𝑥𝑖0,..,𝑖𝑛)

Example

The whole computation of this module (parametrized as Linear(1, 2, "h1", "h0")) is as follows:

(R.h1(V.X0)[2, 1] <= R.h0(V.X0)) | [Activation.IDENTITY]
R.h1 / 1 | [Activation.IDENTITY]

Module parametrized as Linear(1, 2, "h1", "h0", Activation.SIGMOID, 2) translates into:

(R.h1(V.X0, V.X1)[2, 1] <= R.h0(V.X0, V.X1)) | [Activation.IDENTITY]
R.h1 / 2 | [Activation.SIGMOID]

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input name.

• activation (Function) – Activation function of the output. Default: Activation.
IDENTITY

• arity (int) – Arity of the input and output predicate. Default: 1

class MLP(units: ~typing.List[int], output_name: str, input_name: str, activation:
~typing.Union[~neuralogic.core.constructs.function.Function,
~typing.List[~neuralogic.core.constructs.function.Function]] =
<neuralogic.core.constructs.function.Activation object>)

Parameters

• units (List[int]) – List of layer sizes.

• output_name (str) – Output (head) predicate name of the module.

30 Chapter 7. Module Zoo



PyNeuraLogic

• input_name (str) – Input name.

• activation (Union[Function, List[Function]]) – Activation function of all layers
or list of activations for each layer. Default: Activation.RELU

class RvNN(input_size: int, output_name: str, input_name: str, parent_map_name: str, max_children: int = 2,
activation: ~neuralogic.core.constructs.function.Function =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Function = <neuralogic.core.constructs.function.Aggregation
object>, arity: int = 1)

Recursive Neural Network (RvNN) module which is computed as:

h𝑖 = 𝑎𝑐𝑡(𝑎𝑔𝑔𝑗∈𝒞⟨(⟩)(Wid(j)h𝑗))

Where 𝑎𝑐𝑡 is an activation function, 𝑎𝑔𝑔 aggregation function andW’s are learnable parameters. 𝒞⟨(⟩) represents
the ordered list of children of node 𝑖. The 𝑖𝑑(𝑗) function maps node 𝑗 to its index (position) in its parent’s children
list.

Parameters

• input_size (int) – Input feature size.

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input feature predicate name to get leaf features from.

• parent_map_name (str) – Name of the predicate to get mapping from parent to children

• max_children (int) – Maximum number of children (specify which <max_children>-ary
tree will be considered). Default: 2

• activation (Function) – Activation function of all layers. Default: Activation.TANH

• aggregation (Function) – Aggregation function of a layer. Default: Activation.SUM

• arity (int) – Arity of the input and output predicate (doesn’t include the node id term).
Default: 1

class RNN(input_size: int, hidden_size: int, sequence_length: int, output_name: str, input_name: str,
hidden_0_name: str, activation: ~neuralogic.core.constructs.function.Function =
<neuralogic.core.constructs.function.Activation object>, arity: int = 1, next_name: str =
'_next__positive')

One-layer Recurrent Neural Network (RNN) module which is computed as:

ℎ𝑡 = 𝑎𝑐𝑡(W𝑖ℎx𝑡 +Wℎℎh𝑡−1)

where 𝑡 ∈ (1, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ + 1) is a time step. In the template, the 𝑡 is referred to as V.T, and 𝑡 − 1 is
referred to as V.Z. This module expresses the first equation as:

(R.<output_name>(<...terms>, V.T) <= (
R.<input_name>(<...terms>, V.T)[<hidden_size>, <input_size>],
R.<hidden_input_name>(<...terms>, V.Z)[<hidden_size>, <hidden_size>],
R.<next_name>(V.Z, V.T),

)) | [<activation>]

R.<output_name> / <arity> + 1 | [Activation.IDENTITY]

Additionally, we define rules for the recursion purpose (the positive integer sequence R.<next_name>(V.Z,
V.T)) and the “stop condition”, that is:

7.3. General Block Modules 31



PyNeuraLogic

(R.<output_name>(<...terms>, 0) <= R.<hidden_0_name>(<...terms>)) | [Activation.
→˓IDENTITY]

Parameters

• input_size (int) – Input feature size.

• hidden_size (int) – Output and hidden feature size.

• sequence_length (int) – Sequence length.

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input feature predicate name to get features from.

• hidden_0_name (str) – Predicate name to get initial hidden state from.

• activation (Function) – Activation function. Default: Activation.TANH

• arity (int) – Arity of the input and output predicate. Default: 1

• next_name (str) – Predicate name to get positive integer sequence from. Default:
_next__positive

class GRU(input_size: int, hidden_size: int, sequence_length: int, output_name: str, input_name: str,
hidden_0_name: str, arity: int = 1, next_name: str = '_next__positive')

One-layer Gated Recurrent Unit (GRU) module which is computed as:

𝑟𝑡 = 𝜎(W𝑥𝑟x𝑡 +Wℎ𝑟h𝑡−1)

𝑧𝑡 = 𝜎(W𝑥𝑧x𝑡 +Wℎ𝑧h𝑡−1)

𝑛𝑡 = tanh(W𝑥𝑛x𝑡 + 𝑟𝑡 ⊙ (Wℎ𝑛h𝑡−1))

ℎ𝑡 = (1− 𝑧𝑡)⊙ 𝑛𝑡 + 𝑧𝑡 ⊙ ℎ𝑡−1

where 𝑡 ∈ (1, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ + 1) is a time step. In the template, the 𝑡 is referred to as V.T, and 𝑡 − 1 is
referred to as V.Z. This module expresses the first equation as:

(R.<output_name>__r(<...terms>, V.T) <= (
R.<input_name>(<...terms>, V.T)[<hidden_size>, <input_size>],
R.<hidden_input_name>(<...terms>, V.Z)[<hidden_size>, <hidden_size>],
R.<next_name>(V.Z, V.T),

)) | [Activation.SIGMOID]

R.<output_name>__r / <arity> + 1 | [Activation.IDENTITY]

The second equation is expressed in the same way, except for a different head predicate name. The third equation
is split into three rules. The first two computes the element-wise product - 𝑟𝑡 * (Wℎ𝑛h𝑡−1).

(R.<output_name>__n_helper_weighted(<...terms>, V.T) <= (
R.<hidden_input_name>(<...terms>, V.Z)[<hidden_size>, <hidden_size>], R.<next_

→˓name>(V.Z, V.T),
)) | [Activation.IDENTITY],

R.<output_name>__n_helper_weighted / (<arity> + 1) | [Activation.IDENTITY],

(R.<output_name>__n_helper(<...terms>, V.T) <= (
(continues on next page)

32 Chapter 7. Module Zoo



PyNeuraLogic

(continued from previous page)

R.<output_name>__r(<..terms>, V.T), R.<>__n_helper_weighted(<...terms>, V.T)
)) | Metadata(activation="elementproduct-identity"),

R.<output_name>__n_helper / (<arity> + 1) | [Activation.IDENTITY],

The third one computes the sum and applies the 𝑡𝑎𝑛ℎ activation function.

(R.<output_name>__n(<...terms>, V.T) <= (
R.<input_name>(<...terms>, V.T)[<hidden_size>, <input_size>],
R.<output_name>__n_helper(<...terms>, V.T)

)) | [Activation.TANH]
R.<output_name>__n / (<arity> + 1) | [Activation.IDENTITY],

The last equation is computed via three rules. The first two rules computes element-wise products. That is:

(R.<output_name>__left(<...terms>, V.T) <= (
R.<output_name>__z(<...terms>, V.T), R.<output_name>__n(<...terms>, V.T)

)) | Metadata(activation="elementproduct-identity")

(R.<output_name>__right(<...terms>, V.T) <= (
R.<output_name>__z(<...terms>, V.T), R.<hidden_input_name>(<...terms>, V.Z), R.

→˓<next_name>(V.Z, V.T),,
)) | Metadata(activation="elementproduct-identity")

R.<output_name>__left / <arity> + 1 | [Activation.IDENTITY]
R.<output_name>__right / <arity> + 1 | [Activation.IDENTITY]

The last output rule sums up the element-wise products.

(R.<output_name>(<...terms>, V.T) <= (
R.<output_name>__left(<...terms>, V.T), R.<output_name>__right(<...terms>, V.T)

)) | [Activation.IDENTITY]
R.<output_name> / <arity> + 1 | [Activation.IDENTITY],

Additionally, we define rules for the recursion purpose (the positive integer sequence R.<next_name>(V.Z,
V.T)) and the “stop condition”, that is:

(R.<output_name>(<...terms>, 0) <= R.<hidden_0_name>(<...terms>)) | [Activation.
→˓IDENTITY]

Parameters

• input_size (int) – Input feature size.

• hidden_size (int) – Output and hidden feature size.

• sequence_length (int) – Sequence length.

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input feature predicate name to get features from.

• hidden_0_name (str) – Predicate name to get initial hidden state from.

• arity (int) – Arity of the input and output predicate. Default: 1

7.3. General Block Modules 33



PyNeuraLogic

• next_name (str) – Predicate name to get positive integer sequence from. Default:
_next__positive

class LSTM(input_size: int, hidden_size: int, sequence_length: int, output_name: str, input_name: str,
hidden_0_name: str, cell_state_0_name: str, arity: int = 1, next_name: str = '_next__positive')

One-layer Long Short-Term Memory (LSTM) RNN module which is computed as:

𝑖𝑡 = 𝜎(W𝑥𝑖x𝑡 +Wℎ𝑖h𝑡−1)

𝑓𝑡 = 𝜎(W𝑥𝑓x𝑡 +Wℎ𝑓h𝑡−1)

𝑜𝑡 = 𝜎(W𝑥𝑜x𝑡 +Wℎ𝑜h𝑡−1)

𝑔𝑡 = tanh(W𝑥𝑔x𝑡 +Wℎ𝑔h𝑡−1)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

Parameters

• input_size (int) – Input feature size.

• hidden_size (int) – Output and hidden feature size.

• sequence_length (int) – Sequence length.

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input feature predicate name to get features from.

• hidden_0_name (str) – Predicate name to get initial hidden state from.

• cell_state_0_name (str) – Predicate name to get initial cell state from.

• arity (int) – Arity of the input and output predicate. Default: 1

• next_name (str) – Predicate name to get positive integer sequence from. Default:
_next__positive

class Pooling(output_name: str, input_name: str, aggregation: Function, input_arity: int = 1)
Apply generic pooling over the input specified by the input_name and the input arity parameters. Can be ex-
pressed as:

ℎ = 𝑎𝑔𝑔𝑖0,..,𝑖𝑛∈𝑁 (𝑥(𝑖0,..,𝑖𝑛))

Where 𝑁 is a set of tuples of length 𝑛 (specified by the input arity parameter) that are valid arguments for the
input predicate.

For example, a classic pooling over graph nodes represented by relations of arity 1 (node id) would be calculated
as:

ℎ = 𝑎𝑔𝑔𝑖∈𝑁 (𝑥(𝑖))

Here 𝑁 refers to a set of all node ids. Lifting the restriction of the input arity via the input_arity parameter allows
for pooling not only nodes but also edges (input_arity=2) and other objects (hyperedges etc.)

34 Chapter 7. Module Zoo



PyNeuraLogic

Examples

The whole computation of this module (parametrized as Pooling("h1", "h0", Aggregation.AVG)) is as
follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.AVG, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

Module parametrized as Pooling("h1", "h0", Aggregation.MAX, 2) translates into:

(R.h1 <= R.h0(V.X0, V.X1)) | [Aggregation.MAX, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

Parameters

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input name.

• aggregation (Function) – Aggregation function.

• input_arity (int) – Arity of the input predicate input_name. Default: 1

class SumPooling(output_name: str, input_name: str, input_arity: int = 1)
Apply sum pooling over the input specified by the input_name and the input arity parameters. Can be expressed
as:

ℎ =
∑︁

𝑖0,..,𝑖𝑛∈𝑁

𝑥(𝑖0,..,𝑖𝑛)

Where 𝑁 is a set of tuples of length 𝑛 (specified by the input arity parameter) that are valid arguments for the
input predicate.

This module extends the generic pooling Pooling.

Examples

The whole computation of this module (parametrized as SumPooling("h1", "h0")) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.SUM, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

Parameters

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input name.

• input_arity (int) – Arity of the input predicate input_name. Default: 1

class AvgPooling(output_name: str, input_name: str, input_arity: int = 1)
Apply average pooling over the input specified by the input_name and the input arity parameters. Can be ex-
pressed as:

ℎ =
1

|𝑁 |
∑︁

𝑖0,..,𝑖𝑛∈𝑁

𝑥(𝑖0,..,𝑖𝑛)

7.3. General Block Modules 35



PyNeuraLogic

Where 𝑁 is a set of tuples of length 𝑛 (specified by the input arity parameter) that are valid arguments for the
input predicate.

This module extends the generic pooling Pooling.

Examples

The whole computation of this module (parametrized as AvgPooling("h1", "h0")) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.AVG, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

Parameters

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input name.

• input_arity (int) – Arity of the input predicate input_name. Default: 1

class MaxPooling(output_name: str, input_name: str, input_arity: int = 1)
Apply max pooling over the input specified by the input_name and the input arity parameters. Can be expressed
as:

ℎ = 𝑚𝑎𝑥𝑖0,..,𝑖𝑛∈𝑁 (𝑥(𝑖0,..,𝑖𝑛))

Where 𝑁 is a set of tuples of length 𝑛 (specified by the input arity parameter) that are valid arguments for the
input predicate.

This module extends the generic pooling Pooling.

Examples

The whole computation of this module (parametrized as MaxPooling("h1", "h0")) is as follows:

(R.h1 <= R.h0(V.X0)) | [Aggregation.MAX, Activation.IDENTITY]
R.h1 / 0 | [Activation.IDENTITY]

Parameters

• output_name (str) – Output (head) predicate name of the module.

• input_name (str) – Input name.

• input_arity (int) – Arity of the input predicate input_name. Default: 1

36 Chapter 7. Module Zoo



PyNeuraLogic

7.4 Meta Modules

class MetaConv(in_channels: int, out_channels: int, output_name: str, feature_name: str, role_name:
~typing.Optional[str], roles: ~typing.List[str], activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Metagraph Convolutional Unit layer from Meta-GNN: metagraph neural network for semi-supervised learning
in attributed heterogeneous information networks. Which can be expressed as:

x′
𝑖 = 𝑎𝑐𝑡(W0 · x𝑖 + 𝑎𝑔𝑔𝑗∈𝒩𝑟(𝑖)

∑︁
𝑘∈𝒦

(Wk · x𝑗))

Where act is an activation function, agg aggregation function (by default average), 𝑊0 is a learnable root pa-
rameter and 𝑊𝑘 is a learnable parameter for each role.

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• role_name (Optional[str]) – Role predicate name to use for role relations. When None,
elements from roles are used instead.

• roles (List[str]) – List of relations’ names

• activation (Activation) – Activation function of the output. Default: Activation.
SIGMOID

• aggregation (Aggregation) – Aggregation function of nodes’ neighbors. Default:
Aggregation.AVG

class MAGNNMean(output_name: str, feature_name: str, relation_name: str, type_name: ~typing.Optional[str],
meta_paths: ~typing.List[str], activation: ~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Intra-metapath Aggregation module with Mean encoder from “MAGNN: Metapath Aggregated Graph Neural
Network for Heterogeneous Graph Embedding”. Which can be expressed as:

h𝑃 (𝑣,𝑢) = 𝑀𝐸𝐴𝑁({x𝑡|∀𝑡 ∈ 𝑃 (𝑣, 𝑢)})

h𝑃
𝑣 = 𝑎𝑐𝑡(

∑︁
𝑢∈𝑁𝑃

𝑣

h𝑃 (𝑣,𝑢))

Where act is an activation function,𝑃 (𝑣, 𝑢) is a single metapath instance,𝑁𝑃
𝑣 is set of metapath-based neighbors.

Parameters

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• relation_name (str) – Relation predicate name for connectivity checks between entities.

7.4. Meta Modules 37

https://dl.acm.org/doi/10.1145/3341161.3342859
https://dl.acm.org/doi/10.1145/3341161.3342859
https://arxiv.org/abs/2002.01680
https://arxiv.org/abs/2002.01680


PyNeuraLogic

• type_name (Optional[str]) – Metapath type predicate name. If none, meta_paths will
be used instead.

• meta_paths (List[str]) – Name of types forming a single metapath.

• activation (Activation) – Activation function of the output. Default: Activation.
SIGMOID

class MAGNNLinear(in_channels: int, out_channels: int, output_name: str, feature_name: str, relation_name: str,
type_name: ~typing.Optional[str], meta_paths: ~typing.List[str], activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, aggregation:
~neuralogic.core.constructs.function.Aggregation =
<neuralogic.core.constructs.function.Aggregation object>)

Intra-metapath Aggregation module with Linear encoder from “MAGNN: Metapath Aggregated Graph Neural
Network for Heterogeneous Graph Embedding”. Which can be expressed as:

h𝑃 (𝑣,𝑢) = W𝑝 ·𝑀𝐸𝐴𝑁({x𝑡|∀𝑡 ∈ 𝑃 (𝑣, 𝑢)})

h𝑃
𝑣 = 𝑎𝑐𝑡(

∑︁
𝑢∈𝑁𝑃

𝑣

h𝑃 (𝑣,𝑢))

Where act is an activation function,𝑃 (𝑣, 𝑢) is a single metapath instance,𝑁𝑃
𝑣 is set of metapath-based neighbors.

Parameters

• in_channels (int) – Input feature size.

• out_channels (int) – Output feature size.

• output_name (str) – Output (head) predicate name of the module.

• feature_name (str) – Feature predicate name to get features from.

• relation_name (str) – Relation predicate name for connectivity checks between entities.

• type_name (Optional[str]) – Metapath type predicate name. If none, meta_paths will
be used instead.

• meta_paths (List[str]) – Name of types forming a single metapath.

• activation (Activation) – Activation function of the output. Default: Activation.
SIGMOID

38 Chapter 7. Module Zoo

https://arxiv.org/abs/2002.01680
https://arxiv.org/abs/2002.01680


CHAPTER

EIGHT

ADVANCED USAGE

8.1 Heterogeneous Graphs

Most GNN models consider graphs to be homogeneous - that is, all nodes being of one type, despite many possible
instances of problems, where it would be beneficial to utilize information about entities’ types and their relations’ types.
In PyNeuraLogic, we can easily encode instances of such heterogeneous graphs with an arbitrary number of nodes’
and edges’ classes out of the box.

Let’s consider the graph in the above figure, where nodes’ color represents their type (either Blue or Pink). We can
represent introduced nodes’ types in the input examples, for example, as the following list of ground relations:

Relation.type(1, Term.BLUE),
Relation.type(2, Term.BLUE),
Relation.type(3, Term.PINK),
Relation.type(4, Term.PINK),
Relation.type(5, Term.PINK),

Note: Note that there are many ways to express the same concept. We could, for example, encode types (for nodes 1
and 3) as Relation.blue(1), Relation.pink(3). Nodes are also not limited to have only one type; we can assign
multiple types to one node, such as Relation.type(1, Term.BLUE), Relation.type(1, Term.PINK).

Note: In this example, we consider only nodes’ types, but we can analogically encode edges’ (or any other) types.

We can then utilize the information about types for various use cases. In the following example, we showcase a template
rule for the aggregation of neighbor nodes of the central node with the same type as the central node.

Relation.h(Var.X) <= (
Relation.feature(Var.Y),
Relation.type(Var.X, Var.Type),
Relation.type(Var.Y, Var.Type),
Relation.edge(Var.Y, Var.X),

)

39



PyNeuraLogic

Since types are just regular constructs (relations) in PyNeuraLogic, we are able to manipulate them as anything else.
We can, for example, create hierarchies of types or, as is shown in the following example, attach features to types in
input examples and then utilize them in the aggregation.

Relation.type_feature(Term.BLUE)[[1, 2, 3]]

Relation.h(Var.X) <= (
Relation.feature(Var.Y),
Relation.type_feature(Var.Type),
Relation.type(Var.Y, Var.Type),
Relation.edge(Var.Y, Var.X),

)

8.2 Utilizing Inference Engine

While translating logic programs into computations graphs, PyNeuraLogic utilizes an inference engine. The infer-
ence engine serves for deducing information from the input knowledge base encoded in examples or a template. For
convenience, this functionality is also exposed via a high-level interface to be accessible for users.

8.2.1 London Underground Example

The interface for the inference engine is relatively simple. Consider the following example based on the “Simply
Logical: Intelligent Reasoning by Example” book by Peter Flach. We have a network based on a part of the London
Underground encoded as a directed graph as visualized in the following image.

This graph can be encoded as connected(From, To, Line) such as:

from neuralogic.core import Template, R, V, T

template = Template()
template += [

R.connected(T.bond_street, T.oxford_circus, T.central),
R.connected(T.oxford_circus, T.tottenham_court_road, T.central),
R.connected(T.bond_street, T.green_park, T.jubilee),
R.connected(T.green_park, T.charing_cross, T.jubilee),
R.connected(T.green_park, T.piccadilly_circus, T.piccadilly),
R.connected(T.piccadilly_circus, T.leicester_square, T.piccadilly),
R.connected(T.green_park, T.oxford_circus, T.victoria),
R.connected(T.oxford_circus, T.piccadilly_circus, T.bakerloo),

(continues on next page)

40 Chapter 8. Advanced Usage

https://en.wikipedia.org/wiki/Inference_engine
https://book.simply-logical.space/
https://book.simply-logical.space/


PyNeuraLogic

(continued from previous page)

R.connected(T.piccadilly_circus, T.charing_cross, T.bakerloo),
R.connected(T.tottenham_court_road, T.leicester_square, T.northern),
R.connected(T.leicester_square, T.charing_cross, T.northern),

]

This template essentially encodes only direct connections between stations (nodes). We might want to extend this
knowledge by deducing which stations are nearby - stations with at most one station between them.

So stations are nearby if they are directly connected, which can be expressed as:

template += R.nearby(V.X, V.Y) <= R.connected(V.X, V.Y, V.L)

Stations are also nearby if exactly one station lays on the path between those two stations and are on the same line.

template += R.nearby(V.X, V.Y) <= (R.connected(V.X, V.Z, V.L), R.connected(V.Z, V.Y, V.
→˓L))

Now we can ask the inference engine to get all sorts of different information, such as what stations are nearby the
Tottenham Court Road station.

from neuralogic.inference.inference_engine import InferenceEngine

engine = InferenceEngine(template)

engine.q(R.nearby(T.tottenham_court_road, V.X))

Running the query (or q) will return a generator of dictionaries with all possible substitutions for all variables in the
query. In this case, we have only one variable in the query (V.X). As you can see, the inference engine found all stations
that are nearby the Tottenham Court Road station (Leicester Square and Charing Cross).

[
{"X": "leicester_square"},
{"X": "charing_cross"},

]

We could also ask the inference engine to get all possible nearby stations (R.nearby(V.X, V.Y)) and so on.

Finding Path Recursively

We can also define another rule to check a generic path from a station X to another station Y. We will call this rule
reachable and use recursion in its definition. The reachable rule is satisfied if two stations are directly connected
or station X is connected to station Z from which you can reach Y.

template += R.reachable(V.X, V.Y) <= R.connected(V.X, V.Y, V.L)
template += R.reachable(V.X, V.Y) <= (R.connected(V.X, V.Z, V.L), R.reachable(V.Z, V.Y))

Now we can ask the inference engine what stations we can reach from a station or ask more exact queries such as if two
specific stations are reachable.

engine = InferenceEngine(template)

if engine.query(R.reachable(T.green_park, T.tottenham_court_road)):
(continues on next page)

8.2. Utilizing Inference Engine 41



PyNeuraLogic

(continued from previous page)

print("Yes, you can reach Tottenham Court Road from Green Park")
else:

print("Those two stations are reachable, so this should never be printed out")

Changing the Knowledge Base

There might be cases where we want to reuse defined rules on the different knowledge bases (e.g., on different cities’
underground systems) or extend the knowledge base for some queries (e.g., add additional routes).

We can extend the current knowledge defined in the template using the set_knowledge method.

engine.set_knowledge(additional_knowledge)

We can also set a knowledge that will extend the knowledge base defined in the template but will ignore the knowledge
set by the set_knowledge method. This knowledge base will be considered only for the context of the query.

engine.query(R.some_query, additional_knowledge)

8.3 Fuzzy Relational Inference Engine

In the Utilizing Inference Engine section, we introduced a high-level interface for the underlying inference engine that
does only minimal work to provide more performance (e.g., it does not construct neural networks). To complement this
type of inference engine, PyNeuraLogic also provides an evaluation inference engine that, on top of finding all valid
substitutions, runs an evaluation of the provided logic program.

8.3.1 Finding the Shortest Path

As an example of a possible use case of the evaluation inference engine, we will take a look at the example from
Utilizing Inference Engine but with a slight twist - we introduce weights to connections, representing either distance
from stations in time or some unit of length.

The encoding is almost the same, except for added values to each connection, that is connected(From, To,
Line)[Distance].

from neuralogic.core import Template, R, V, T, Metadata, Aggregation, Activation,␣
→˓ActivationAgg
from neuralogic.inference.evaluation_inference_engine import EvaluationInferenceEngine

(continues on next page)

42 Chapter 8. Advanced Usage



PyNeuraLogic

(continued from previous page)

template = Template()
template += [

R.connected(T.bond_street, T.oxford_circus, T.central)[7],
R.connected(T.oxford_circus, T.tottenham_court_road, T.central)[9],
R.connected(T.bond_street, T.green_park, T.jubilee)[14],
R.connected(T.green_park, T.charing_cross, T.jubilee)[21],
R.connected(T.green_park, T.piccadilly_circus, T.piccadilly)[8],
R.connected(T.piccadilly_circus, T.leicester_square, T.piccadilly)[6],
R.connected(T.green_park, T.oxford_circus, T.victoria)[15],
R.connected(T.oxford_circus, T.piccadilly_circus, T.bakerloo)[12],
R.connected(T.piccadilly_circus, T.charing_cross, T.bakerloo)[11],
R.connected(T.tottenham_court_road, T.leicester_square, T.northern)[8],
R.connected(T.leicester_square, T.charing_cross, T.northern)[7],

]

We have defined two rules called shortest_path. The first rule aggregates connected stations and takes all connec-
tions’ maximum value (distance). The second rule handles instances when stations are not directly connected - at least
one station has to be traversed to get to the goal station. The second rule aggregates all possible instances and finds
maximum value while “calling” one of the two rules recursively.

metadata = Metadata(aggregation=Aggregation.MIN, activation=Activation.IDENTITY)

template += (R.shortest(V.X, V.Y) <= R.connected(V.X, V.Y, V.L)) | metadata
template += (R.shortest(V.X, V.Y) <= (R.connected(V.X, V.Z, V.L), R.shortest_path(V.Z, V.
→˓Y))) | metadata

Attention: Notice we are appending metadata with aggregation (Min) and activation (Identity) functions.

It is also necessary to set additional activation functions to identity.

template += R.shortest_path / 2 | Metadata(activation=ActivationAgg.MIN + Activation.
→˓IDENTITY)
template += R.connected / 3 | Metadata(activation=Activation.IDENTITY)

Evaluating Queries

Now when the template and the knowledge base are ready, we can run queries the same way as for the previously in-
troduced instance of InferenceEngine. The only difference in the interface for EvaluationInferenceEngine
are returned values from the generator - instead of returning generator of dictionaries containing substitutions,
EvaluationInferenceEngine returns a generator of tuple containing the output of evaluation and the dictionary
of substitutions.

We can, for example, get the shortest path from the Bond Street station to the Charing Cross station.

engine = EvaluationInferenceEngine(template)

result = engine.q(R.shortest_path(T.bond_street, T.charing_cross)

print(list(result))

8.3. Fuzzy Relational Inference Engine 43



PyNeuraLogic

[
(30.0, {})

]

The query computed the distance to be 30 units, which is the actual shortest distance for this input. But this query does
not bring any additional value compared to evaluation via evaluators or directly on the model.

To fully utilize the fuzzy relational inference engine, we would also want to get some substitutions. For example, we
can get the shortest distances from the Green Park station to all reachable stations.

result = engine.q(R.shortest_path(T.green_park, V.X))

print(list(result))

[
(19.0, {'X': 'charing_cross'}),
(14.0, {'X': 'leicester_square'}),
(8.0, {'X': 'piccadilly_circus'}),
(15.0, {'X': 'oxford_circus'}),
(24.0, {'X': 'tottenham_court_road'})

]

This output then tells us that the shortest path to the Charing Cross station from the Green Park station is 19 units long,
to the Leicester Square station it is 14 units long, and so on.

8.4 Modifiers

Modifiers are optional and alter an relations’ behavior in some way. Currently, there are two following modifiers, which
can be chained together:

8.4.1 Hidden Modifier

Sometimes, there are relations in rules that only define the logic structure and are not beneficial to be included in the
computation graph. For those cases, there is a hidden modifier that enforces exactly that - includes relation for the logic
part and excludes relation in the resulting computation graph.

For example, consider the following rule. In some instances, it might be counterproductive to include the edge relations
in the resulting computation graph (e.g., they might not have any edge features), yet those edge relations cannot be
removed as they define a critical part of the logic structure of the program. Including them in the computation graph
will produce a side effect - offsetting the result of relations h.

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation.edge(Var.X, Var.Y))

This issue can be solved by flagging the predicate edge as hidden, ensuring that relations with such a predicate will
not be included in the computation graph.

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation.hidden.edge(Var.X, Var.Y))

# can be written also as (prepended _ makes predicate hidden)

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation._edge(Var.X, Var.Y))

44 Chapter 8. Advanced Usage



PyNeuraLogic

8.4.2 Special Modifier

The special modifier changes the relation’s behavior depending on its predicate name. We can utilize the following
special predicates:

• Relation.special.alldiff
A special relation with the alldiff predicate ensures that its terms (logic variables) are substituted for
different values (unique values). It’s also possible to use ... in place of terms, which is substituted for all
variables declared in the current rule - no variable declared in the rule can be substituted for the same value
simultaneously.

Relation.special.alldiff(Var.X, Var.Y) # Var.X cannot equal to Var.Y

# Var.X != Var.Y != Var.Z
Relation.h(Var.X) <= (Relation.b(Var.Y, Var.Z), Relation.special.alldiff(...))

• Relation.special.anypred

• Relation.special.in

• Relation.special.maxcard

• Relation.special.true

• Relation.special.false

• Relation.special.neq

• Relation.special.leq

• Relation.special.geq

• Relation.special.lt

• Relation.special.gt

• Relation.special.eq

8.5 Visualization

You can run this page in Jupyter Notebook

PyNeuraLogic offers multiple options for visualization of templates and samples, which can be helpful while investi-
gating how the high-level rule representations are being translated into computation graphs. The usage of visualization
tools requires having installed Graphviz.

Depending on the parametrization, the drawing methods can output either graph image in bytes, graph image rendered
into a file, or graph image displayed into IPython (Jupyter Notebook).

Additionally, it is also possible to retrieve the generated source of graphs in the DOT format. This format can then be
used to display or further customize and manipulate generated graphs in other libraries.

8.5. Visualization 45

https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb
https://graphviz.org/download/


PyNeuraLogic

8.5.1 Visualization of the XOR Example

To showcase the usage of visualization tools, we will use the template and the dataset introduced in XOR Example

Model Rendering

All that is needed to visualize the model - the template with current weights’ values is to call the draw method.

from neuralogic.utils.data import XOR_Vectorized
from neuralogic.core import Settings, Backend

template, dataset = XOR_Vectorized()
model = template.build(Backend.JAVA, Settings())

model.draw()

Tip: If you are using evaluators, you can draw the model via the evaluator.draw method.

Tip: You can also visualize the template by calling the template.draw method.

Templates (models) and samples can be drawn into various raster formats (such as PNG or JPEG) or SVG format, which
is considerably faster for larger graphs. To set the format, simply use the img_type parameter.

46 Chapter 8. Advanced Usage

https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/IntroductionIntoPyNeuraLogic.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/IntroductionIntoPyNeuraLogic.ipynb


PyNeuraLogic

The drawing can be further parameterized, for example, with the value_detail parameter to display more (or less)
decimal places of all values (there are three levels of detail - 0-2, where 0 has the least number of decimals and 2 the
most number of decimals).

The model above was directly drawn into Jupyter Notebook without any parametrization. To draw the model into a file,
all we have to do is add the filename parameter with a path to the output image, such as:

model.draw(filename="my_image.png")

We can also get raw images bytes by turning off displaying into IPython:

model.draw(draw_ipython=False)

Tip: If you are drawing straight into Jupyter Notebook, you can include additional parameters into drawing functions
to customize the underlying Image and SVG objects.

Samples Rendering

Samples can be drawn in the same way and supports the same parametrization as the model drawing.

An example of drawing samples can be seen in the code below, where we render the actual computation graph for the
first example (input [0, 0]).

built_dataset = model.build_dataset(dataset)

built_dataset.samples[0].draw()

8.5. Visualization 47

https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.Image
https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#IPython.display.Image


PyNeuraLogic

Getting the DOT Source

To get the DOT source of the model or the sample, all you have to do is call the model_to_dot_source function or
the sample_to_dot_source function, respectively.

from neuralogic.utils.visualize import sample_to_dot_source

dot_source = sample_to_dot_source(built_dataset.samples[0])
print(dot_source)

digraph G {
3 [shape=house, color=black, label="FactNeuron:3:w:<w3> [0,0] : xy
val: [0,0]
grad: [0,0]
dim: [2, 1]
fcn:
"]

2 [shape=ellipse, color=red, label="WeightedRuleNeuron:2:{1,8}xor:-{8,2}xy.
val: [0,0,0,0,0,0,0,0]
grad: [0,0,0,0,0,0,0,0]
dim: [8, 1]
fcn: Tanh
"]
2 -> 3 [label="1:w1:[8, 2]:[
[0.76,0.88],
[-0.45,-0.74],
[-0.71,-0.95],
[0.09,0.93],
[-0.79,0.25],
[-0.18,0.55],
[0.98,-0.03],
[0.49,0.47]
]"]

0 [shape=ellipse, color=blue, label="WeightedAtomNeuron:0:xor
val: 0
grad: 0
dim: []
fcn: Tanh
"]
0 -> 2 [label="0:w0:[1, 8]:[0.46,-0.52,0.27,0.1,0.2,-0.33,-0.23,0.97]"]

0 [shape = tripleoctagon]
}

48 Chapter 8. Advanced Usage



PyNeuraLogic

8.6 Recursive XOR Generalization

You can run this page in Jupyter Notebook

In one of our introductory examples we have showcased how to learn the XOR operation for two inputs. In this example,
we will generalize the learning of the XOR operation to N inputs while making the use of recursion.

We will define a recursive template, train it on the classic XOR (two inputs) and show an inference of inputs of different
lengths.

The template will essentially evaluate 𝑥𝑜𝑟𝑛 = 𝑥𝑜𝑟(𝑣𝑎𝑙𝑛, 𝑥𝑜𝑟𝑛−1) with shared weights across all depths.

from neuralogic.nn import get_evaluator
from neuralogic.core import Settings, R, V, Template, Activation
from neuralogic.dataset import Dataset

Before we define rules for the actual learning, we introduce helper relations (facts) R._next. Those rules serve for
the definition of the sequence of integers, that is 1, 2, ..., 𝑁 (𝑁 is defined by max_number_of_vars). We have to do
that because later on, we will utilize this sequence for the recursion. Integers in PyNeuraLogic are independent entities
with no extra meaning or context.

max_number_of_vars = 5

template = Template()
template += (R._next(i, i + 1) for i in range(max_number_of_vars))

We then define the base case of the recursion, that is, to get the value of 𝑥𝑜𝑟 of length 1 (index 0) return the value of
the first (index 0) element.

template += R.xor_at(0) <= R.val_at(0)

Now when we have the base case ready, we introduce the recursive “calls”. The following rule can be interpreted as
“To calculate the 𝑥𝑜𝑟 of length 𝑁 (V.Y), calculate the xor of length 𝑁 − 1 (V.X) and pipe the result together with the
element at index 𝑁 (R.val_at(V.Y)) into 𝑥𝑜𝑟”.

We also assigned three unique vector learnable parameters and named them. Naming is entirely optional and is here
only to show the mapping later.

template += R.xor_at(V.Y)["a": 1, 8] <= (R.val_at(V.Y)["b": 8, 1], R.xor_at(V.X)["c": 8,␣
→˓1], R._next(V.X, V.Y))

And that is everything you need to define a template for recursive generalization of XOR!

The recursion, together with weights mapping, can be viewed in the template graph by drawing it.

template.draw()

8.6. Recursive XOR Generalization 49

https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/IntroductionIntoPyNeuraLogic.ipynb


PyNeuraLogic

The definition of the training data set is straightforward; we train the model on inputs of the length of two. That is, we
encode 𝑥𝑜𝑟(0, 0) = 0, 𝑥𝑜𝑟(1, 0) = 1, and so on as the training set.

examples = [
[R.val_at(0)[0], R.val_at(1)[0]], # input: 0, 0
[R.val_at(0)[0], R.val_at(1)[1]], # input: 0, 1
[R.val_at(0)[1], R.val_at(1)[0]], # input: 1, 0
[R.val_at(0)[1], R.val_at(1)[1]], # input: 1, 1

]

queries = [ # outputs: 0, 1, 1, and 0
R.xor_at(1)[0], R.xor_at(1)[1], R.xor_at(1)[1], R.xor_at(1)[0],

]

train_dataset = Dataset(examples, queries)

settings = Settings(
epochs=5000, rule_activation=Activation.TANH, relation_activation=Activation.

→˓IDENTITY, iso_value_compression=False
)

evaluator = get_evaluator(template, settings)
built_dataset = evaluator.build_dataset(train_dataset)

Note: Notice we turned off compression, so the recursion is clearly visible in the visual representation later on.

Once we build the training dataset, we can visualize each sample. For example, the 𝑥𝑜𝑟(0, 0) sample will be represented
by the following computation graph.

built_dataset.samples[0].draw()

evaluator.train(built_dataset, generator=False)

We train the model on the training dataset via the evaluator and then prepare a test dataset. We can put any input of maxi-

50 Chapter 8. Advanced Usage



PyNeuraLogic

mum length of N (max_number_of_vars) into the dataset. For this example, we chose 𝑥𝑜𝑟(0, 0, 1) and 𝑥𝑜𝑟(1, 0, 1, 0).
Feel free to try out other lengths and combinations!

test_examples = [
[R.val_at(0)[0], R.val_at(1)[0], R.val_at(2)[1]],
[R.val_at(0)[1], R.val_at(1)[0], R.val_at(2)[1], R.val_at(3)[0]],

]

test_queries = [
R.xor_at(2), R.xor_at(3)

]

test_dataset = Dataset(test_examples, test_queries)
built_test_dataset = evaluator.build_dataset(test_dataset)

When we visualize our test samples and compare them, we can clearly see how the template is recursively unrolled into
computation graphs (trees) with shared weights across depths.

built_test_dataset.samples[0].draw()

built_test_dataset.samples[1].draw()

8.6. Recursive XOR Generalization 51



PyNeuraLogic

Running inference on our test dataset yields correct results, that is 𝑥𝑜𝑟(0, 0, 1) = 1 and 𝑥𝑜𝑟(1, 0, 1, 0) = 0.

for _, result in evaluator.test(built_test_dataset):
print(result) # 1, 0

8.7 Java Settings, Logging and Debugging

PyNeuraLogic, at its core, utilizes procedures (such as grounding) running on a Java Virtual Machine (JVM). JVM
itself offers plentiful options to set, such as memory limitations, garbage collectors settings, and more.

This section will go through interfaces that allow you to pass your own JVM settings. We will also look into JVM
logging and JVM debugging.

52 Chapter 8. Advanced Usage



PyNeuraLogic

8.7.1 JVM Settings

Important: Customizing JVM settings and JVM path is applicable only before a JVM is started. If you want to do
some customizations, do them before working with PyNeuraLogic (building model/building samples, etc.)

By default, PyNeuraLogic uses JVM found on your PATH. If you want to use a different JVM, you can do that by calling
the neuralogic.set_jvm_path function, such as:

import neuralogic

neuralogic.set_jvm_path("/some/path/my_jvm/")

You can also make some adjustments to JVM settings via the neuralogic.set_jvm_options function. By default,
two options are passed into the JVM - "-Xms1g", which sets the minimum amount of heap memory size to 1 GB, and
"-Xmx64g", which sets the maximum amount of heap memory size to 64 GB.

This function overrides already set options, so if you want to keep defaults or previously set options,you will have to
specify them again. For example, you can inspect the garbage collector with customizing settings such as:

import neuralogic

neuralogic.set_jvm_options(["-Xms1g", "-Xmx64g", "-XX:+PrintGCDetails"])

8.7.2 Java Logging

Looking into the Java logs can be valuable practice to get better insight into what is going on in the background. It
offers a lot of information about all steps, such as the grounding process. This info is also practical when asking for
help in discussion/issues.

You can add a logging handler anytime you want with any level by calling the add_handler function. The first
argument can be any object that implements a write(message: str) method (e.g., file handlers, sys.stdout,
etc.).

import sys
from neuralogic.logging import add_handler, Formatter, Level

add_handler(sys.stdout, Level.FINE, Formatter.COLOR)

If you decide you no longer want to subscribe to loggers, you can remove all logging handlers by calling the
clear_handlers function.

from neuralogic.logging import clear_handlers

clear_handlers()

8.7. Java Settings, Logging and Debugging 53



PyNeuraLogic

8.7.3 Java Debugging

Important: To run PyNeuraLogic in debug mode, you have to run the debug mode before a JVM is started - therefore,
run the debug mode before working with PyNeuraLogic (building model/building samples, etc.)

There is a prepared interface to run the JVM in the debug mode, which allows to attach a remote debugger on the
JVM and then use breakpoints on the NeuraLogic project, as usual. You can enable the debug mode by calling the
neuralogic.initialize function with the argument debug_mode=True.

import neuralogic

neuralogic.initialize(debug_mode=True)

>>> Listening for transport dt_socket at address: 12999

Once you get the message above, the execution of the python program will wait (by default) for you to connect your
remote debugger to the port (by default, 12999). Via other arguments of the initialize function, it is possible to specify
further things like debugging port, etc.

Once the remote debugger is attached, the execution of the Python program will continue until the execution hits a
breakpoint.

• Heterogeneous Graphs
Learn how to represent heterogeneous graphs and possible ways to incorporate rules utilizing them into your
templates.

• Utilizing Inference Engine
PyNeuraLogic offers to utilize its engine only for inference as well. This section goes through an example to
showcase the usage of the inference engine, to get all possible substitutions satisfying our queries.

• Fuzzy Relational Inference Engine
You can also extend the inference engine from the previous section and utilize numeric relations’ values. For
example, to compute the shortest paths between points as in this example!

• Modifiers
Some relations can have special meanings and functionalities. You can find out more about them here.

• Visualization
Having a visual representation of your model can help you get a better insight. Learn how to utilize prepared
tools to visualize your models/templates and samples.

• Recursive XOR Generalization
Learn how recursive templates can be defined and utilized!

• Java Settings, Logging and Debugging
In this section, we go through all the different settings of the backend engine, such as using its logging,
debugging, passing additional JVM arguments, etc.

54 Chapter 8. Advanced Usage

https://github.com/GustikS/NeuraLogic


CHAPTER

NINE

EXAMPLES

• Molecular GNNs

• Simple XOR example

• Recursive XOR Generalization

• Visualization

• Pattern Matching

• Distinguishing k-regular graphs

• Distinguishing non-regular graphs

55

https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb


PyNeuraLogic

56 Chapter 9. Examples



CHAPTER

TEN

BENCHMARKS

Here we compare the speed of some popular GNN models encoded in PyNeuraLogic against some of the most popular
GNN frameworks in their latest versions, namely (2.0.2), (0.6.1), and (1.0.6).

The benchmarks report comparison of the average training time per epoch of three different architectures - GCN (two
GCNConv layers), GraphSAGE (two GraphSAGEConv layers), and GIN (five GINConv layers).

Datasets are picked from the common and are loaded into PyNeuraLogic, DGL, and PyG via PyG’s . Spektral bench-
mark uses Spektral’s .

We compare the frameworks in a binary graph classification task with only node’s features. This is merely for the sake
of simple reusability of the introduced architectures over the frameworks. Statistics of each dataset can be seen down
below.

Due to its declarative nature, PyNeuraLogic has to transform each dataset into a logic form and then into a computation
graph. The time spent on this preprocessing task is labeled as “Dataset Build Time”. Note that this transformation
happens only once before the training.

MUTAG

NCI1

PROTEINS

BZR

COX2

DHFR

KKI

Peking_1

GCN GraphSAGE GIN
Spektral 0.1238s 0.1547s 0.2491s
Deep Graph Library 0.1287s 0.1795s 0.5214s
PyTorch Geometric 0.0897s 0.1099s 0.3399s
PyNeuraLogic 0.0083s 0.0119s 0.0393s

GCN GraphSAGE GIN
PyNeuraLogic 1.4265s 1.9372s 2.3662s

57



PyNeuraLogic

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
188 ~17.9 ~19.7 7

GCN GraphSAGE GIN
Spektral 3.0152s 3.1773s 5.1924s
Deep Graph Library 3.1044s 4.3426s 11.3512s
PyTorch Geometric 1.9226s 2.6211s 7.0598s
PyNeuraLogic 0.2396s 0.3461s 1.5037s

GCN GraphSAGE GIN
PyNeuraLogic 24.8405s 25.2125s 57.4115s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
4110 ~29.8 ~32.3 37

GCN GraphSAGE GIN
Spektral 0.7221s 1.0153s 1.4591s
Deep Graph Library 0.7859s 1.1963s 3.1576s
PyTorch Geometric 0.5047s 0.6455s 1.9786s
PyNeuraLogic 0.0741s 0.1111s 0.5524s

GCN GraphSAGE GIN
PyNeuraLogic 9.9873s 10.0125s 24.2591s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
1113 ~39.0 ~72.8 3

GCN GraphSAGE GIN
Spektral 0.2730s 0.3238s 0.5144s
Deep Graph Library 0.3035s 0.4288s 1.1171s
PyTorch Geometric 0.1847s 0.2464s 0.7232s
PyNeuraLogic 0.0293s 0.0469s 0.1552s

GCN GraphSAGE GIN
PyNeuraLogic 3.8219s 3.9852s 7.0831s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
405 ~35.7 ~38.3 53

58 Chapter 10. Benchmarks



PyNeuraLogic

GCN GraphSAGE GIN
Spektral 0.3411s 0.3705s 0.5975s
Deep Graph Library 0.3513s 0.5124s 1.2988s
PyTorch Geometric 0.2082s 0.2857s 0.8086s
PyNeuraLogic 0.0321s 0.0505s 0.1754s

GCN GraphSAGE GIN
PyNeuraLogic 4.2805s 4.5738s 8.6356s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
467 ~41.2 ~43.4 35

GCN GraphSAGE GIN
Spektral 0.5578s 0.6058s 0.9708s
Deep Graph Library 0.6063s 0.8010s 2.1136s
PyTorch Geometric 0.3388s 0.4588s 1.3178s
PyNeuraLogic 0.0572s 0.0879s 0.3168s

GCN GraphSAGE GIN
PyNeuraLogic 7.3361s 7.3635s 15.0887s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
467 ~42.4 ~44.5 53

GCN GraphSAGE GIN
Spektral 0.0565s 0.0797s 0.1200s
Deep Graph Library 0.0611s 0.0887s 0.2292s
PyTorch Geometric 0.0370s 0.0535s 0.1480s
PyNeuraLogic 0.0262s 0.0321s 0.0529s

GCN GraphSAGE GIN
PyNeuraLogic 1.7563s 2.0459s 2.6008s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
83 ~26.9 ~48.4 190

59



PyNeuraLogic

GCN GraphSAGE GIN
Spektral 0.0597s 0.0851s 0.1244s
Deep Graph Library 0.0654s 0.0923s 0.2335s
PyTorch Geometric 0.0404s 0.0608s 0.1547s
PyNeuraLogic 0.0371s 0.0469s 0.0778s

GCN GraphSAGE GIN
PyNeuraLogic 2.3414s 2.2352s 3.3951s

Num. of Graphs Avg. num. of nodes Avg. num. of edges Num. node of features
85 ~39.3 ~77.3 190

60 Chapter 10. Benchmarks



CHAPTER

ELEVEN

HYPERGRAPH NEURAL NETWORKS

A hypergraph is a generalization of a simple graph 𝐺 = (𝑉,𝐸), where 𝑉 is a set of vertices and 𝐸 is a set of edges
(hyperedges) connecting an arbitrary number of vertices.

11.1 Representation of hyperedges

When we encode input data (graph) in the form of logic data format (i.e., ground relations), we can represent regular
edges, for example, as Relation.edge(1, 2).

This form of representation can be simply extended to express hyperedges by adding terms for each connected vertex by
the hyperedge. For example, graph 𝐺 = (𝑉,𝐸), where 𝑉 = {1, 2, 3, 4, 5, 6} and 𝐸 = {{1, 2}, {3, 4, 5}, {1, 2, 4, 6}}
can be represented as:

Relation.edge(1, 2),
Relation.edge(3, 4, 5),
Relation.edge(1, 2, 4, 6),

11.2 Propagation on hyperedges

The propagation through standard edges can be similarly extended to support propagation through hyperedges.

Relation.h(Var.X) <= (Relation.feature(Var.Y), Relation.edge(Var.Y, Var.X))

The propagation through standard edges above, where Relation.feature might represent vertex features, and
Relation.edge represents an edge, might be extended to support hyperedges (for hyperedge connecting three ver-
tices) as follows:

Relation.h(Var.X) <= (
Relation.feature(Var.Y),
Relation.feature(Var.Z),
Relation.edge(Var.Y, Var.Z, Var.X),

)

61



PyNeuraLogic

62 Chapter 11. Hypergraph Neural Networks



CHAPTER

TWELVE

HETEROPHILY SETTINGS

Regular GNN models usually consider homophily in the graph - frequently, nodes of similar classes are connected with
each other. This setting does not capture multiple problems adequately, where there is a heterophily amongst connected
nodes - mainly nodes of different classes are connected, resulting in low accuracies of classifications.

There have been proposed new methods and models to properly capture problems of such settings, such as CPGNN
(“Graph Neural Networks with Heterophily”) or H2GCN (“Beyond Homophily in Graph Neural Networks: Current
Limitations and Effective Designs”).

We take into consideration the latter one - the H2GCN model, which is specifically built to deal with heterophily
graphs and implement three key design concepts. All of those concepts can be easily represented in PyNeuraLogic
with a few rules. As in other cases, the rule representation can be further manipulated and tweaked without the need
of reimplementing the whole model or digging into an already implemented black box.

12.1 1. The Central Node Embedding Separation

The first key design is separating the embedding of the central node from the embedding of neighbor nodes. This
behavior can be achieved just with two rules, that can be written in the following form:

Relation.layer_1(Var.X) <= (Relation.layer_0(Var.Y), Relation.edge(Var.Y, Var.X)),
Relation.layer_1(Var.X) <= Relation.layer_0(Var.X)

The first rule aggregates all features of neighbors of the central node, and then we combine the aggregated value with
the value of the second rule, which embeds the features of the central node.

12.2 2. Higher-Order Neighborhoods Embedding

The second concept is to consider not only the direct neighbors but also higher-order neighbors in the computation of
the central node’s representation, such as second-order neighbors (neighbors of neighbors), as can be represented as
the following rule:

Relation.layer_1(Var.X) <= (
Relation.layer_0(Var.Z),
Relation.edge(Var.Y, Var.X),
Relation.edge(Var.Z, Var.Y),
Relation.special.alldiff(...),

)

See also:

For more information about the special predicate alldiff, see Special Modifier.

63

https://arxiv.org/abs/2009.13566
https://arxiv.org/abs/2006.11468
https://arxiv.org/abs/2006.11468


PyNeuraLogic

12.3 3. Combination of Intermediate Representations

The last design concept used in the H2GCN model is the combination of intermediate representation. This can also be
easily achieved in PyNeuraLogic just by one rule, where we combine all representations of layers, such as:

Relation.layer_final(Var.X) <= (
Relation.layer_0(Var.X),
Relation.layer_1(Var.X),
Relation.layer_2(Var.X),
Relation.layer_n(Var.X),

)

64 Chapter 12. Heterophily Settings



CHAPTER

THIRTEEN

NEURALOGIC PACKAGE

13.1 Subpackages

13.1.1 neuralogic.core package

Subpackages

neuralogic.core.builder package

Submodules

neuralogic.core.builder.builder module

class Builder(settings: SettingsProxy)
Bases: object

static build(samples)

build_model(parsed_template, backend: Backend, settings: SettingsProxy)

build_template_from_file(settings: SettingsProxy, filename: str)

from_logic_samples(parsed_template, logic_samples, backend: Backend)

from_sources(parsed_template, sources: Sources, backend: Backend)

static get_builders(settings: SettingsProxy)

stream_to_list(stream)→ List

neuralogic.core.builder.components module

class BuiltDataset(samples)
Bases: object

BuiltDataset represents an already built dataset - that is, a dataset that has been grounded and neuralized.

class Neuron(neuron: Dict[str, Any], index)
Bases: object

65



PyNeuraLogic

static parse_hook_name(name: str)

class RawSample(sample)
Bases: object

draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0,
graphviz_path: Optional[str] = None, *args, **kwargs)

java_sample

class Sample(sample, java_sample)
Bases: RawSample

static deserialize_network(network)

id

java_sample

neurons

output_neuron

target

class Weight(weight)
Bases: object

static get_unit_weight()→ Weight

neuralogic.core.builder.dataset_builder module

class DatasetBuilder(parsed_template, java_factory: JavaFactory)
Bases: object

build_dataset(dataset: BaseDataset, backend: Backend, settings: SettingsProxy, file_mode: bool = False)
→ BuiltDataset

Builds the dataset (does grounding and neuralization) for this template instance and the backend

Parameters

• dataset –

• backend –

• settings –

• file_mode –

Returns

build_examples(examples, examples_builder)

build_queries(queries, query_builder)

static merge_queries_with_examples(queries, examples, one_query_per_example,
example_queries=True)

66 Chapter 13. neuralogic package



PyNeuraLogic

Module contents

neuralogic.core.constructs package

Submodules

neuralogic.core.constructs.factories module

class AtomFactory

Bases: object

class Predicate(hidden=False, special=False)
Bases: object

static get_predicate(name, arity, hidden, special)→ Predicate

property hidden: Predicate

property special: Predicate

get(name: str)→ BaseRelation

class ConstantFactory

Bases: object

class VariableFactory

Bases: object

neuralogic.core.constructs.java_objects module

class JavaFactory(settings: Optional[SettingsProxy] = None)
Bases: object

atom_to_clause(atom)

get_conjunction(relations, variable_factory, default_weight=None, is_example=False)

get_generic_relation(relation_class, relation, variable_factory, default_weight=None,
is_example=False)

get_lifted_example(example)

get_metadata(metadata, metadata_class)

get_new_weight_factory()

get_predicate(predicate)

get_predicate_metadata_pair(predicate_metadata)

get_query(query)

get_relation(relation, variable_factory, is_example=False)

get_rule(rule)

13.1. Subpackages 67



PyNeuraLogic

get_term(term, variable_factory)

get_value(weight)

get_valued_fact(relation, variable_factory, default_weight=None, is_example=False)

get_variable_factory()

get_weight(weight, name, fixed)

neuralogic.core.constructs.metadata module

class Metadata(offset=None, learnable: Optional[bool] = None, activation: Optional[Union[str, Activation,
ActivationAgg]] = None, aggregation: Optional[Union[str, Aggregation]] = None,
duplicit_grounding: bool = False)

Bases: object

activation

aggregation

duplicit_grounding

static from_iterable(iterable: Iterable)→ Metadata

learnable

offset

neuralogic.core.constructs.predicate module

class Predicate(name, arity, hidden=False, special=False)
Bases: object

arity

hidden

name

set_arity(arity)

special

to_str()

class PredicateMetadata(predicate: Predicate, metadata: Metadata)
Bases: object

metadata

predicate

68 Chapter 13. neuralogic package



PyNeuraLogic

neuralogic.core.constructs.rule module

class Rule(head, body)
Bases: object

body

head

is_ellipsis_templated()→ bool

metadata: Optional[Metadata]

Module contents

neuralogic.core.settings package

Submodules

neuralogic.core.settings.settings_proxy module

class SettingsProxy(*, optimizer: Optimizer, learning_rate: float, epochs: int, error_function: ErrorFunction,
initializer: Initializer, rule_activation: Activation, relation_activation: Activation,
iso_value_compression: bool, chain_pruning: bool)

Bases: object

property chain_pruning: bool

property debug_exporting: bool

property default_fact_value: float

property epochs: int

property error_function

get_activation_function(activation: Activation)

property initializer

property initializer_const

property initializer_uniform_scale

property iso_value_compression: bool

property learning_rate: float

property optimizer

property relation_activation: Activation

property rule_activation: Activation

to_json()→ str

13.1. Subpackages 69



PyNeuraLogic

Module contents

class Settings(*, optimizer: ~neuralogic.core.enums.Optimizer = Optimizer.ADAM, learning_rate:
~typing.Optional[float] = None, epochs: int = 3000, error_function:
~neuralogic.nn.loss.ErrorFunction = <neuralogic.nn.loss.MSE object>, initializer:
~neuralogic.nn.init.Initializer = <neuralogic.nn.init.Uniform object>, rule_activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, relation_activation:
~neuralogic.core.constructs.function.Activation =
<neuralogic.core.constructs.function.Activation object>, iso_value_compression: bool = True,
chain_pruning: bool = True)

Bases: object

property chain_pruning: bool

create_disconnected_proxy()→ SettingsProxy

create_proxy()→ SettingsProxy

property epochs: int

property error_function: ErrorFunction

property initializer: Initializer

property iso_value_compression: bool

property learning_rate: float

property optimizer: Optimizer

property relation_activation: Activation

property rule_activation: Activation

Submodules

neuralogic.core.enums module

class Backend(value)
Bases: Enum

An enumeration.

DYNET = 'dynet'

JAVA = 'java'

TORCH = 'torch'

class Optimizer(value)
Bases: str, Enum

An enumeration.

ADAM = 'ADAM'

SGD = 'SGD'

70 Chapter 13. neuralogic package



PyNeuraLogic

neuralogic.core.sources module

class Sources(sources)
Bases: object

static from_args(args: List[str], settings: SettingsProxy)→ Sources

static from_settings(settings: SettingsProxy)→ Sources

to_json()→ str

neuralogic.core.template module

class Template(*, template_file: Optional[str] = None)
Bases: object

add_hook(relation: Union[BaseRelation, str], callback: Callable[[Any], None])→ None
Hooks the callable to be called with the relation’s value as an argument when the value of the relation is
being calculated.

Parameters

• relation –

• callback –

Returns

add_module(module: Module)
Expands the module into rules and adds them into the template

Parameters
module –

Returns

add_rule(rule)→ None
Adds one rule to the template

Parameters
rule –

Returns

add_rules(rules: List)
Adds multiple rules to the template

Parameters
rules –

Returns

build(settings: Settings, backend: Backend = Backend.JAVA)

draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0,
graphviz_path: Optional[str] = None, *args, **kwargs)

get_parsed_template(settings: SettingsProxy, java_factory: JavaFactory)

13.1. Subpackages 71



PyNeuraLogic

remove_duplicates()

Remove duplicates from the template

remove_hook(relation: Union[BaseRelation, str], callback)
Removes the callable from the relation’s hooks

Parameters

• relation –

• callback –

Returns

Module contents

13.1.2 neuralogic.dataset package

Available dataset formats

• Dataset (Logic format)

• FileDataset

• TensorDataset

class Dataset(examples: Optional[List[List[Union[BaseRelation, WeightedRelation, Rule]]]] = None, queries:
Optional[List[Union[List[Union[BaseRelation, WeightedRelation, Rule]], BaseRelation,
WeightedRelation, Rule]]] = None)

Dataset encapsulating (learning) samples in the form of logic format, allowing users to fully take advantage of
the PyNeuraLogic library.

One learning sample consists of: * Example: A list of logic facts and rules representing some instance (e.g., a
graph) * Query: A logic fact to mark the output of a model and optionally target label.

Examples and queries in the dataset can be paired in the following ways:

• N:N - Dataset contains N examples and N queries. They will be paired by their index.

dataset.add_example(first_example)
dataset.add_example(second_example)

dataset.add_query(first_query)
dataset.add_query(second_query)

# Learning samples: [first_example, first_query], [second_example, second_query]

• 1:N - Dataset contains 1 example and N queries. All queries will be run on the example.

dataset.add_example(example)

dataset.add_query(first_query)
dataset.add_query(second_query)

# Learning samples: [example, first_query], [example, second_query]

72 Chapter 13. neuralogic package



PyNeuraLogic

• N:M - Dataset contains N examples and M queries (N <= M). It pairs queries similarly to the N: N case
but also allows running multiple queries on a specific example (by inserting a list of queries instead of one
query).

dataset.add_example(first_example)
dataset.add_example(second_example)

dataset.add_query([first_query_0, first_query_1])
dataset.add_query(second_query)

# Learning samples:
# [first_example, first_query_0], [first_example, first_query_1], [second_example,
→˓ second_query]

Parameters

• examples (Optional[List]) – List of examples. Default: None

• queries (Optional[List]) – List of queries. Default: None

class FileDataset(examples_file: Optional[str] = None, queries_file: Optional[str] = None)
FileDataset represents samples stored in files in the NeuraLogic (logic) format.

Parameters

• examples_file (Optional[str]) – Path to the examples file. Default: None

• queries_file (Optional[str]) – Path to the queries file. Default: None

class Data(x: Sequence, edge_index: Sequence, y: Union[Sequence, float, int], edge_attr: Optional[Sequence] =
None, y_mask: Optional[Sequence] = None)

The Data instance stores information about one specific graph instance.

Example

For example, the directed graph 𝐺 = (𝑉,𝐸), where 𝐸 = {(0, 1), (1, 2), (2, 0)}, node features 𝑋 = {[0], [1], [0]}
and target nodes’ labels 𝑌 = {0, 1, 0} would be represented as:

data = Data(
x=[[0], [1], [0]],
edge_index=[

[0, 1, 2],
[1, 2, 0],

],
y=[0, 1, 0],

)

Parameters

• x (Sequence) – Sequence of node features.

• edge_index (Sequence) – Edges represented via a graph connectivity format - matrix [[.
..src], [...dst]].

• y (Union[Sequence, float, int]) – Sequence of labels of all nodes or one graph label.

• edge_attr (Optional[Sequence]) – Optional sequence of edge features. Default: None

13.1. Subpackages 73

https://github.com/GustikS/NeuraLogic


PyNeuraLogic

• y_mask (Optional[Sequence]) – Optional sequence of node ids to generate queries for.
Default: None (all nodes)

static from_pyg(data)→ List[Data]
Converts a PyTorch Geometric Data instance into a list of PyNeuraLogic Data instances. The conversion
supports train_mask, test_mask and val_mask attributes - for each mask the conversion yields a new
data instance.

Parameters
data – The PyTorch Geometric Data instance

Returns
The list of PyNeuraLogic Data instances

class TensorDataset(data: List[Data], one_hot_encode_labels: bool = False, one_hot_decode_features: bool =
False, number_of_classes: int = 1, feature_name: str = 'node_feature', edge_name: str =
'edge', output_name: str = 'predict')

The TensorDataset holds a list of Data instances - a list of graphs represented in a tensor format.

Parameters

• data (List[Data]) – List of data (graph) instances.

• one_hot_encode_labels (bool) – Turn numerical labels into one hot encoded vec-
tors - e.g., label 2 would be turned into a vector [0, 0, 1, .., 0] of length
number_of_classes. Default: False

• one_hot_decode_features (bool = False) – Turn one hot encoded feature vectors into
a scalar - e.g., feature vector [0, 0, 1] would be turned into a scalar feature 2. Default:
False

• number_of_classes (int) – Specifies the number of classes for converting numerical la-
bels to one hot encoded vectors. Default: 1

• feature_name (str) – Specify the node feature predicate name used for converting into the
logic format. Default: node_feature

• edge_name (str) – Specify the edge predicate name used for converting into the logic for-
mat. Default: edge

• output_name (str) – Specify the output predicate name used for converting into the logic
format. Default: predict

13.1.3 neuralogic.nn package

Subpackages

neuralogic.nn.evaluator package

Submodules

neuralogic.nn.evaluator.dynet module

neuralogic.nn.evaluator.java module

74 Chapter 13. neuralogic package



PyNeuraLogic

class JavaEvaluator(problem: Optional[Template], settings: Settings)
Bases: AbstractEvaluator

load_state_dict(state_dict: Dict)

reset_dataset(dataset)

set_dataset(dataset: Union[BaseDataset, BuiltDataset])

state_dict()→ Dict

test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True, epochs:
Optional[int] = None)

neuralogic.nn.evaluator.torch module

class TorchEvaluator(template: Template, settings: Settings)
Bases: AbstractEvaluator

error_functions = {'SOFTENTROPY': CrossEntropyLoss(), 'SQUARED_DIFF': MSELoss()}

load_state_dict(state_dict: Dict)

state_dict()→ Dict

test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

trainers = {Optimizer.ADAM: <function TorchEvaluator.<lambda>>, Optimizer.SGD:
<function TorchEvaluator.<lambda>>}

Module contents

Submodules

neuralogic.nn.init module

class Constant(value: float = 0.1)
Bases: Initializer

Initializes learnable parameters with the value.

Parameters
value (float) – Value to fill weights with. Default: 0.1

get_settings()→ Dict[str, Any]

class Glorot(scale: float = 2)
Bases: Initializer

Initializes learnable parameters with samples from a uniform distribution (from the interval [-scale / 2,
scale / 2]) using the Glorot method.

13.1. Subpackages 75



PyNeuraLogic

Parameters
scale (float) – Scale of a uniform distribution interval [-scale / 2, scale / 2]. Default: 2

get_settings()→ Dict[str, Any]

is_simple()→ bool

class He(scale: float = 2)
Bases: Initializer

Initializes learnable parameters with samples from a uniform distribution (from the interval [-scale / 2,
scale / 2]) using the He method.

Parameters
scale (float) – Scale of a uniform distribution interval [-scale / 2, scale / 2]. Default: 2

get_settings()→ Dict[str, Any]

is_simple()→ bool

class Initializer

Bases: object

get_settings()→ Dict[str, Any]

is_simple()→ bool

class InitializerNames

Bases: object

CONSTANT = 'CONSTANT'

GLOROT = 'GLOROT'

HE = 'HE'

LONGTAIL = 'LONGTAIL'

NORMAL = 'NORMAL'

UNIFORM = 'UNIFORM'

class Longtail

Bases: Initializer

Initializes learnable parameters with random samples from a long tail distribution

class Normal

Bases: Initializer

Initializes learnable parameters with random samples from a normal (Gaussian) distribution

class Uniform(scale: float = 2)
Bases: Initializer

Initializes learnable parameters with random uniformly distributed samples from the interval [-scale / 2,
scale / 2].

Parameters
scale (float) – Scale of the distribution interval [-scale / 2, scale / 2]. Default: 2

get_settings()→ Dict[str, Any]

76 Chapter 13. neuralogic package



PyNeuraLogic

neuralogic.nn.base module

class AbstractEvaluator(backend: Backend, template: Template, settings: Settings)
Bases: object

build_dataset(dataset: Union[BaseDataset, BuiltDataset], file_mode: bool = False)

draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0,
graphviz_path: Optional[str] = None, *args, **kwargs)

load_state_dict(state_dict: Dict)

property model: AbstractNeuraLogic

parameters()→ Dict

reset_parameters()

set_dataset(dataset: Union[BaseDataset, BuiltDataset])

state_dict()→ Dict

test(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

train(dataset: Optional[Union[BaseDataset, BuiltDataset]] = None, *, generator: bool = True)

class AbstractNeuraLogic(backend: Backend, dataset_builder: DatasetBuilder, template: Template, settings:
SettingsProxy)

Bases: object

build_dataset(dataset: Union[BaseDataset, BuiltDataset], file_mode: bool = False)

draw(filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0,
graphviz_path: Optional[str] = None, *args, **kwargs)

load_state_dict(state_dict: Dict)

parameters()→ Dict

run_hook(hook: str, value)

set_hooks(hooks)

state_dict()→ Dict

sync_template(state_dict: Optional[Dict] = None, weights=None)

neuralogic.nn.dynet module

neuralogic.nn.java module

class NeuraLogic(model, dataset_builder, template, settings: SettingsProxy)
Bases: AbstractNeuraLogic

load_state_dict(state_dict: Dict)

reset_parameters()

13.1. Subpackages 77



PyNeuraLogic

set_training_samples(samples)

state_dict()→ Dict

test()

train()

neuralogic.nn.torch module

class NeuraLogic(model: List[Weight], dataset_builder, template, settings: Optional[SettingsProxy] = None)
Bases: AbstractNeuraLogic

activations = {'Average': <built-in method mean of type object>, 'Maximum':
<built-in method max of type object>, 'Minimum': <built-in method min of type
object>, 'ReLu': <built-in method relu of type object>, 'Sigmoid': <built-in
method sigmoid of type object>, 'Sum': <built-in method sum of type object>,
'Tanh': <built-in method tanh of type object>}

build_sample(sample: Sample)

initializers = {'CONSTANT': <function NeuraLogic.<lambda>>, 'GLOROT': <function
NeuraLogic.<lambda>>, 'HE': <function NeuraLogic.<lambda>>, 'LONGTAIL': <function
longtail>, 'NORMAL': <function NeuraLogic.<lambda>>, 'UNIFORM': <function
NeuraLogic.<lambda>>}

load_state_dict(state_dict: Dict)

process_neuron_inputs(neuron: Neuron, neurons: List[Tensor], weights: ParameterList)→
Tuple[List[Union[Tensor, int, float]], List[Tensor], List[Tensor]]

reset_parameters()

state_dict()→ Dict

static to_tensor_value(value)→ Tensor

to_torch_expression(neuron: Neuron, neurons: List[Tensor], weights: ParameterList)→ Tensor

longtail(tensor: Tensor, _: SettingsProxy)

Module contents

get_evaluator(template, settings=None, backend: Backend = Backend.JAVA)

get_neuralogic_layer(backend: Backend = Backend.JAVA)

78 Chapter 13. neuralogic package



PyNeuraLogic

13.1.4 neuralogic.utils package

Subpackages

neuralogic.utils.data package

Module contents

Family()

Mutagenesis()

Nations()

Trains()

XOR()

XOR_Vectorized()

neuralogic.utils.visualize package

Module contents

draw(drawer, obj, filename: Optional[str] = None, draw_ipython=True, img_type='png', *args, **kwargs)

draw_model(model, filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0,
graphviz_path: Optional[str] = None, *args, **kwargs)

Draws model either as an image of type img_type either into:

• a file - if filename is specified),

• an IPython Image - if draw_ipython is True

• or bytes otherwise

Parameters

• model –

• filename –

• draw_ipython –

• img_type –

• value_detail –

• graphviz_path –

• args –

• kwargs –

Returns

13.1. Subpackages 79



PyNeuraLogic

draw_sample(sample, filename: Optional[str] = None, draw_ipython=True, img_type='png', value_detail: int = 0,
graphviz_path: Optional[str] = None, *args, **kwargs)

Draws sample either as an image of type img_type either into:

• a file - if filename is specified),

• an IPython Image - if draw_ipython is True

• or bytes otherwise

Parameters

• sample –

• filename –

• draw_ipython –

• img_type –

• detail –

• graphviz_path –

• args –

• kwargs –

Returns

get_drawing_settings(img_type: str = 'png', value_detail: int = 0, graphviz_path: Optional[str] = None)→
SettingsProxy

Returns the default settings instance for drawing with a specified image type.

Parameters

• img_type –

• value_detail –

• graphviz_path –

Returns

get_sample_drawer(settings: SettingsProxy)

get_template_drawer(settings: SettingsProxy)

model_to_dot_source(model)→ str
Renders the model into its dot source representation.

Parameters
model –

Returns

sample_to_dot_source(sample, value_detail: int = 0)→ str
Renders the sample into its dot source representation.

Parameters

• sample –

• value_detail –

80 Chapter 13. neuralogic package



PyNeuraLogic

Returns

to_dot_source(drawer, obj)→ str

Module contents

13.2 Submodules

13.3 neuralogic.logging module

class Formatter(value)
Bases: Enum

Logged information formatters

COLOR = 'color'

NORMAL = 'normal'

class Level(value)
Bases: Enum

Logging level

ALL = 'ALL'

CONFIG = 'CONFIG'

FINE = 'FINE'

FINER = 'FINER'

FINEST = 'FINEST'

INFO = 'INFO'

OFF = 'OFF'

SEVERE = 'SEVERE'

WARNING = 'WARNING'

class TextIOWrapper(wrapped_text_io)
Bases: object

write(string)

add_handler(output, level: Level = Level.FINER, formatter: Formatter = Formatter.COLOR)
Add logger handler for an insight into the java backend

Parameters

• output – File-like object (has write(text: str) method)

• level – The logging level

• formatter – The log formatter

clear_handlers()

Clear all handlers

13.2. Submodules 81



PyNeuraLogic

13.4 Module contents

initial_seed()→ int
Returns the initial random seed for a random number generator used in the backend

initialize(debug_mode: bool = False, debug_port: int = 12999, is_debug_server: bool = True, debug_suspend:
bool = True)

is_initialized()→ bool

manual_seed(seed: int)
Sets the seed for a random number generator used in the backend to the passed seed.

Parameters
seed –

seed()→ int
Sets the seed for a random number generator used in the backend to a random seed and returns the seed.

set_jvm_options(options: List[str])→ None
Set the jvm options - by default [“-Xms1g”, “-Xmx64g”],

set_jvm_path(path: Optional[str])→ None

PyNeuraLogic lets you use Python to create Differentiable Logic Programs

Logic programming is a declarative coding paradigm in which you declare your logical variables and relations between
them. These can be further composed into so-called rules that drive the computation. Such a rule set then forms a logic
program, and its execution is equivalent to performing logic inference with the rules.

PyNeuralogic, through its NeuraLogic backend, then makes this inference process differentiable which, in turn, makes
it equivalent to forward propagation in deep learning. This lets you learn numeric parameters that can be associated
with the rules, just like you learn weights in neural networks.

82 Chapter 13. neuralogic package

https://badge.fury.io/py/neuralogic
https://badge.fury.io/py/neuralogic
https://github.com/LukasZahradnik/PyNeuraLogic/actions/workflows/tests.yml
https://pyneuralogic.readthedocs.io/en/latest/?badge=latest
https://github.com/GustikS/NeuraLogic


CHAPTER

FOURTEEN

WHAT IS THIS GOOD FOR?

Many things! For instance - ever heard of Graph Neural Networks (GNNs)? Well, a graph happens to be a special
case of a logical relation - a binary one to be more exact. Now, at the heart of any GNN model there is a so-called
propagation rule for passing ‘messages’ between the neighboring nodes. Particularly, the representation (‘message’)
of a node X is calculated by aggregating the representations of adjacent nodes Y, i.e. those with an edge between X and
Y.

Or, a bit more ‘formally’:

Relation.node2(Var.X) <= (Relation.node1(Var.Y), Relation.edge(Var.Y, Var.X))

. . . and that’s the actual code! Now for a classic learnable GNN layer, you’ll want to add some numeric parameters,
such as

Relation.node2(Var.X)[5,10] <= (Relation.node1(Var.Y)[10,20], Relation.edge(Var.Y, Var.
→˓X))

to project your [1,20] input node embeddings through a learnable [10,20] layer before the aggregation, and sub-
sequently a [5,10] layer after the aggregation. The particular aggregation and activation functions, as well as other
details, can naturally be specified further, but you can as well leave it default like we did here with your first, fully
functional GNN layer!

83

https://distill.pub/2021/gnn-intro/
https://pyneuralogic.readthedocs.io/en/latest/language.html


PyNeuraLogic

84 Chapter 14. What is this good for?



CHAPTER

FIFTEEN

HOW IS IT DIFFERENT FROM OTHER GNN FRAMEWORKS?

Naturally, PyNeuralogic is by no means limited to GNN models, as the expressiveness of relational logic goes much
further beyond graphs. So nothing stops you from playing directly with:

• multiple relations and object types

• hypergraphs, nested graphs, relational databases

• alternative propagation schemes

• direct sub-structure (pattern) matching

• inclusion of logical background knowledge

• and more. . .

In PyNeuraLogic, all these ideas take the same form of simple small logic programs. These are commonly highly
transparent and easy to understand, thanks to their declarative nature. Consequently, there is no need to design a new
blackbox class name for each small modification of the GNN rule - you code directly at the level of the logical principles
here!

The backend engine then creates the underlying differentiable computation (inference) graphs in a fully automated and
dynamic fashion, hence you don’t have to care about aligning everything into some (static) tensor operations. This
gives you considerably more expressiveness, and, perhaps surprisingly, sometimes even performance.

We hope you’ll find the framework useful in designing your own deep relational learning ideas beyond the GNNs!
Please let us know if you need some guidance or would like to cooperate!

85

https://dspace.cvut.cz/bitstream/handle/10467/97065/F3-DP-2021-Zahradnik-Lukas-Extending-Graph-Neural-Networks-with-Relational-Logic.pdf?sequence=-1&isAllowed=y
https://arxiv.org/abs/2007.06286


PyNeuraLogic

86 Chapter 15. How is it different from other GNN frameworks?



CHAPTER

SIXTEEN

SUPPORTED BACKENDS

Models defined in PyNeuraLogic can be built for and evaluated in different backends. Currently, you can pick and use
the following backends, which, except for the Java backend, have to be additionally installed:

• Java

• PyTorch

• DyNet

87

https://github.com/pytorch/pytorch
https://github.com/clab/dynet


PyNeuraLogic

88 Chapter 16. Supported backends



CHAPTER

SEVENTEEN

EXAMPLES

• Molecular GNNs

• Simple XOR example

• Recursive XOR Generalization

• Visualization

• Pattern Matching

• Distinguishing k-regular graphs

• Distinguishing non-regular graphs

89

https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/MolecularGNN.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/SimpleXOR.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/RecursiveXORGeneralization.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/Visualization.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/PatternMatching.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingKRegularGraphs.ipynb
https://colab.research.google.com/github/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb
https://github.com/LukasZahradnik/PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb


PyNeuraLogic

90 Chapter 17. Examples



CHAPTER

EIGHTEEN

PAPERS

• Beyond Graph Neural Networks with Lifted Relational Neural Networks Machine Learning Journal, 2021

• Lifted Relational Neural Networks Journal of Artificial Intelligence Research, 2018

• Lossless compression of structured convolutional models via lifting ICLR, 2021

91

https://arxiv.org/abs/2007.06286
https://arxiv.org/abs/1508.05128
https://arxiv.org/abs/2007.06567


PyNeuraLogic

92 Chapter 18. Papers



PYTHON MODULE INDEX

n
neuralogic, 82
neuralogic.core, 72
neuralogic.core.builder, 67
neuralogic.core.builder.builder, 65
neuralogic.core.builder.components, 65
neuralogic.core.builder.dataset_builder, 66
neuralogic.core.constructs, 69
neuralogic.core.constructs.factories, 67
neuralogic.core.constructs.java_objects, 67
neuralogic.core.constructs.metadata, 68
neuralogic.core.constructs.predicate, 68
neuralogic.core.constructs.rule, 69
neuralogic.core.enums, 70
neuralogic.core.settings, 70
neuralogic.core.settings.settings_proxy, 69
neuralogic.core.sources, 71
neuralogic.core.template, 71
neuralogic.logging, 81
neuralogic.nn, 78
neuralogic.nn.base, 77
neuralogic.nn.evaluator, 75
neuralogic.nn.evaluator.java, 74
neuralogic.nn.evaluator.torch, 75
neuralogic.nn.init, 75
neuralogic.nn.java, 77
neuralogic.nn.torch, 78
neuralogic.utils, 81
neuralogic.utils.data, 79
neuralogic.utils.visualize, 79

93



PyNeuraLogic

94 Python Module Index



INDEX

A
AbstractEvaluator (class in neuralogic.nn.base), 77
AbstractNeuraLogic (class in neuralogic.nn.base), 77
activation (Metadata attribute), 68
activations (NeuraLogic attribute), 78
ADAM (Optimizer attribute), 70
add_handler() (in module neuralogic.logging), 81
add_hook() (Template method), 71
add_module() (Template method), 71
add_rule() (Template method), 71
add_rules() (Template method), 71
aggregation (Metadata attribute), 68
ALL (Level attribute), 81
APPNPConv (class in neuralogic.nn.module.gnn.appnp),

27
arity (Predicate attribute), 68
atom_to_clause() (JavaFactory method), 67
AtomFactory (class in neu-

ralogic.core.constructs.factories), 67
AtomFactory.Predicate (class in neu-

ralogic.core.constructs.factories), 67
AvgPooling (class in neu-

ralogic.nn.module.general.pooling), 35

B
Backend (class in neuralogic.core.enums), 70
body (Rule attribute), 69
build() (Builder static method), 65
build() (Template method), 71
build_dataset() (AbstractEvaluator method), 77
build_dataset() (AbstractNeuraLogic method), 77
build_dataset() (DatasetBuilder method), 66
build_examples() (DatasetBuilder method), 66
build_model() (Builder method), 65
build_queries() (DatasetBuilder method), 66
build_sample() (NeuraLogic method), 78
build_template_from_file() (Builder method), 65
Builder (class in neuralogic.core.builder.builder), 65
BuiltDataset (class in neu-

ralogic.core.builder.components), 65

C
chain_pruning (Settings property), 70
chain_pruning (SettingsProxy property), 69
clear_handlers() (in module neuralogic.logging), 81
COLOR (Formatter attribute), 81
CONFIG (Level attribute), 81
Constant (class in neuralogic.nn.init), 75
CONSTANT (InitializerNames attribute), 76
ConstantFactory (class in neu-

ralogic.core.constructs.factories), 67
create_disconnected_proxy() (Settings method), 70
create_proxy() (Settings method), 70

D
Data (class in neuralogic.dataset.tensor), 73
Dataset (class in neuralogic.dataset.logic), 72
DatasetBuilder (class in neu-

ralogic.core.builder.dataset_builder), 66
debug_exporting (SettingsProxy property), 69
default_fact_value (SettingsProxy property), 69
deserialize_network() (Sample static method), 66
draw() (AbstractEvaluator method), 77
draw() (AbstractNeuraLogic method), 77
draw() (in module neuralogic.utils.visualize), 79
draw() (RawSample method), 66
draw() (Template method), 71
draw_model() (in module neuralogic.utils.visualize), 79
draw_sample() (in module neuralogic.utils.visualize),

79
duplicit_grounding (Metadata attribute), 68
DYNET (Backend attribute), 70

E
epochs (Settings property), 70
epochs (SettingsProxy property), 69
error_function (Settings property), 70
error_function (SettingsProxy property), 69
error_functions (TorchEvaluator attribute), 75

F
Family() (in module neuralogic.utils.data), 79
FileDataset (class in neuralogic.dataset.file), 73

95



PyNeuraLogic

FINE (Level attribute), 81
FINER (Level attribute), 81
FINEST (Level attribute), 81
Formatter (class in neuralogic.logging), 81
from_args() (Sources static method), 71
from_iterable() (Metadata static method), 68
from_logic_samples() (Builder method), 65
from_pyg() (Data static method), 74
from_settings() (Sources static method), 71
from_sources() (Builder method), 65

G
GATv2Conv (class in neuralogic.nn.module.gnn.gatv2),

26
GCNConv (class in neuralogic.nn.module.gnn.gcn), 22
get() (AtomFactory method), 67
get_activation_function() (SettingsProxy method),

69
get_builders() (Builder static method), 65
get_conjunction() (JavaFactory method), 67
get_drawing_settings() (in module neu-

ralogic.utils.visualize), 80
get_evaluator() (in module neuralogic.nn), 78
get_generic_relation() (JavaFactory method), 67
get_lifted_example() (JavaFactory method), 67
get_metadata() (JavaFactory method), 67
get_neuralogic_layer() (in module neuralogic.nn),

78
get_new_weight_factory() (JavaFactory method), 67
get_parsed_template() (Template method), 71
get_predicate() (AtomFactory.Predicate static

method), 67
get_predicate() (JavaFactory method), 67
get_predicate_metadata_pair() (JavaFactory

method), 67
get_query() (JavaFactory method), 67
get_relation() (JavaFactory method), 67
get_rule() (JavaFactory method), 67
get_sample_drawer() (in module neu-

ralogic.utils.visualize), 80
get_settings() (Constant method), 75
get_settings() (Glorot method), 76
get_settings() (He method), 76
get_settings() (Initializer method), 76
get_settings() (Uniform method), 76
get_template_drawer() (in module neu-

ralogic.utils.visualize), 80
get_term() (JavaFactory method), 67
get_unit_weight() (Weight static method), 66
get_value() (JavaFactory method), 68
get_valued_fact() (JavaFactory method), 68
get_variable_factory() (JavaFactory method), 68
get_weight() (JavaFactory method), 68
GINConv (class in neuralogic.nn.module.gnn.gin), 23

Glorot (class in neuralogic.nn.init), 75
GLOROT (InitializerNames attribute), 76
GRU (class in neuralogic.nn.module.general.gru), 32

H
He (class in neuralogic.nn.init), 76
HE (InitializerNames attribute), 76
head (Rule attribute), 69
hidden (AtomFactory.Predicate property), 67
hidden (Predicate attribute), 68

I
id (Sample attribute), 66
INFO (Level attribute), 81
initial_seed() (in module neuralogic), 82
initialize() (in module neuralogic), 82
Initializer (class in neuralogic.nn.init), 76
initializer (Settings property), 70
initializer (SettingsProxy property), 69
initializer_const (SettingsProxy property), 69
initializer_uniform_scale (SettingsProxy prop-

erty), 69
InitializerNames (class in neuralogic.nn.init), 76
initializers (NeuraLogic attribute), 78
is_ellipsis_templated() (Rule method), 69
is_initialized() (in module neuralogic), 82
is_simple() (Glorot method), 76
is_simple() (He method), 76
is_simple() (Initializer method), 76
iso_value_compression (Settings property), 70
iso_value_compression (SettingsProxy property), 69

J
JAVA (Backend attribute), 70
java_sample (RawSample attribute), 66
java_sample (Sample attribute), 66
JavaEvaluator (class in neuralogic.nn.evaluator.java),

74
JavaFactory (class in neu-

ralogic.core.constructs.java_objects), 67

L
learnable (Metadata attribute), 68
learning_rate (Settings property), 70
learning_rate (SettingsProxy property), 69
Level (class in neuralogic.logging), 81
Linear (class in neuralogic.nn.module.general.linear),

30
load_state_dict() (AbstractEvaluator method), 77
load_state_dict() (AbstractNeuraLogic method), 77
load_state_dict() (JavaEvaluator method), 75
load_state_dict() (NeuraLogic method), 77, 78
load_state_dict() (TorchEvaluator method), 75

96 Index



PyNeuraLogic

Longtail (class in neuralogic.nn.init), 76
LONGTAIL (InitializerNames attribute), 76
longtail() (in module neuralogic.nn.torch), 78
LSTM (class in neuralogic.nn.module.general.lstm), 34

M
MAGNNLinear (class in neu-

ralogic.nn.module.meta.magnn), 38
MAGNNMean (class in neuralogic.nn.module.meta.magnn),

37
manual_seed() (in module neuralogic), 82
MaxPooling (class in neu-

ralogic.nn.module.general.pooling), 36
merge_queries_with_examples() (DatasetBuilder

static method), 66
MetaConv (class in neuralogic.nn.module.meta.meta), 37
Metadata (class in neu-

ralogic.core.constructs.metadata), 68
metadata (PredicateMetadata attribute), 68
metadata (Rule attribute), 69
MLP (class in neuralogic.nn.module.general.mlp), 30
model (AbstractEvaluator property), 77
model_to_dot_source() (in module neu-

ralogic.utils.visualize), 80
module

neuralogic, 82
neuralogic.core, 72
neuralogic.core.builder, 67
neuralogic.core.builder.builder, 65
neuralogic.core.builder.components, 65
neuralogic.core.builder.dataset_builder,

66
neuralogic.core.constructs, 69
neuralogic.core.constructs.factories, 67
neuralogic.core.constructs.java_objects,

67
neuralogic.core.constructs.metadata, 68
neuralogic.core.constructs.predicate, 68
neuralogic.core.constructs.rule, 69
neuralogic.core.enums, 70
neuralogic.core.settings, 70
neuralogic.core.settings.settings_proxy,

69
neuralogic.core.sources, 71
neuralogic.core.template, 71
neuralogic.logging, 81
neuralogic.nn, 78
neuralogic.nn.base, 77
neuralogic.nn.evaluator, 75
neuralogic.nn.evaluator.java, 74
neuralogic.nn.evaluator.torch, 75
neuralogic.nn.init, 75
neuralogic.nn.java, 77
neuralogic.nn.torch, 78

neuralogic.utils, 81
neuralogic.utils.data, 79
neuralogic.utils.visualize, 79

Mutagenesis() (in module neuralogic.utils.data), 79

N
name (Predicate attribute), 68
Nations() (in module neuralogic.utils.data), 79
neuralogic

module, 82
NeuraLogic (class in neuralogic.nn.java), 77
NeuraLogic (class in neuralogic.nn.torch), 78
neuralogic.core

module, 72
neuralogic.core.builder

module, 67
neuralogic.core.builder.builder

module, 65
neuralogic.core.builder.components

module, 65
neuralogic.core.builder.dataset_builder

module, 66
neuralogic.core.constructs

module, 69
neuralogic.core.constructs.factories

module, 67
neuralogic.core.constructs.java_objects

module, 67
neuralogic.core.constructs.metadata

module, 68
neuralogic.core.constructs.predicate

module, 68
neuralogic.core.constructs.rule

module, 69
neuralogic.core.enums

module, 70
neuralogic.core.settings

module, 70
neuralogic.core.settings.settings_proxy

module, 69
neuralogic.core.sources

module, 71
neuralogic.core.template

module, 71
neuralogic.logging

module, 81
neuralogic.nn

module, 78
neuralogic.nn.base

module, 77
neuralogic.nn.evaluator

module, 75
neuralogic.nn.evaluator.java

module, 74

Index 97



PyNeuraLogic

neuralogic.nn.evaluator.torch
module, 75

neuralogic.nn.init
module, 75

neuralogic.nn.java
module, 77

neuralogic.nn.torch
module, 78

neuralogic.utils
module, 81

neuralogic.utils.data
module, 79

neuralogic.utils.visualize
module, 79

Neuron (class in neuralogic.core.builder.components), 65
neurons (Sample attribute), 66
Normal (class in neuralogic.nn.init), 76
NORMAL (Formatter attribute), 81
NORMAL (InitializerNames attribute), 76

O
OFF (Level attribute), 81
offset (Metadata attribute), 68
Optimizer (class in neuralogic.core.enums), 70
optimizer (Settings property), 70
optimizer (SettingsProxy property), 69
output_neuron (Sample attribute), 66

P
parameters() (AbstractEvaluator method), 77
parameters() (AbstractNeuraLogic method), 77
parse_hook_name() (Neuron static method), 65
Pooling (class in neu-

ralogic.nn.module.general.pooling), 34
Predicate (class in neu-

ralogic.core.constructs.predicate), 68
predicate (PredicateMetadata attribute), 68
PredicateMetadata (class in neu-

ralogic.core.constructs.predicate), 68
process_neuron_inputs() (NeuraLogic method), 78

R
RawSample (class in neu-

ralogic.core.builder.components), 66
relation_activation (Settings property), 70
relation_activation (SettingsProxy property), 69
remove_duplicates() (Template method), 71
remove_hook() (Template method), 72
reset_dataset() (JavaEvaluator method), 75
reset_parameters() (AbstractEvaluator method), 77
reset_parameters() (NeuraLogic method), 77, 78
ResGatedGraphConv (class in neu-

ralogic.nn.module.gnn.res_gated), 28
RGCNConv (class in neuralogic.nn.module.gnn.rgcn), 23

RNN (class in neuralogic.nn.module.general.rnn), 31
Rule (class in neuralogic.core.constructs.rule), 69
rule_activation (Settings property), 70
rule_activation (SettingsProxy property), 69
run_hook() (AbstractNeuraLogic method), 77
RvNN (class in neuralogic.nn.module.general.rvnn), 31

S
SAGEConv (class in neuralogic.nn.module.gnn.gsage), 23
Sample (class in neuralogic.core.builder.components), 66
sample_to_dot_source() (in module neu-

ralogic.utils.visualize), 80
seed() (in module neuralogic), 82
set_arity() (Predicate method), 68
set_dataset() (AbstractEvaluator method), 77
set_dataset() (JavaEvaluator method), 75
set_hooks() (AbstractNeuraLogic method), 77
set_jvm_options() (in module neuralogic), 82
set_jvm_path() (in module neuralogic), 82
set_training_samples() (NeuraLogic method), 77
Settings (class in neuralogic.core.settings), 70
SettingsProxy (class in neu-

ralogic.core.settings.settings_proxy), 69
SEVERE (Level attribute), 81
SGConv (class in neuralogic.nn.module.gnn.sg), 26
SGD (Optimizer attribute), 70
Sources (class in neuralogic.core.sources), 71
special (AtomFactory.Predicate property), 67
special (Predicate attribute), 68
state_dict() (AbstractEvaluator method), 77
state_dict() (AbstractNeuraLogic method), 77
state_dict() (JavaEvaluator method), 75
state_dict() (NeuraLogic method), 78
state_dict() (TorchEvaluator method), 75
stream_to_list() (in module neu-

ralogic.core.builder.builder), 65
SumPooling (class in neu-

ralogic.nn.module.general.pooling), 35
sync_template() (AbstractNeuraLogic method), 77

T
TAGConv (class in neuralogic.nn.module.gnn.tag), 25
target (Sample attribute), 66
Template (class in neuralogic.core.template), 71
TensorDataset (class in neuralogic.dataset.tensor), 74
test() (AbstractEvaluator method), 77
test() (JavaEvaluator method), 75
test() (NeuraLogic method), 78
test() (TorchEvaluator method), 75
TextIOWrapper (class in neuralogic.logging), 81
to_dot_source() (in module neu-

ralogic.utils.visualize), 81
to_json() (SettingsProxy method), 69
to_json() (Sources method), 71

98 Index



PyNeuraLogic

to_str() (Predicate method), 68
to_tensor_value() (NeuraLogic static method), 78
to_torch_expression() (NeuraLogic method), 78
TORCH (Backend attribute), 70
TorchEvaluator (class in neu-

ralogic.nn.evaluator.torch), 75
train() (AbstractEvaluator method), 77
train() (JavaEvaluator method), 75
train() (NeuraLogic method), 78
train() (TorchEvaluator method), 75
trainers (TorchEvaluator attribute), 75
Trains() (in module neuralogic.utils.data), 79

U
Uniform (class in neuralogic.nn.init), 76
UNIFORM (InitializerNames attribute), 76

V
VariableFactory (class in neu-

ralogic.core.constructs.factories), 67

W
WARNING (Level attribute), 81
Weight (class in neuralogic.core.builder.components), 66
write() (TextIOWrapper method), 81

X
XOR() (in module neuralogic.utils.data), 79
XOR_Vectorized() (in module neuralogic.utils.data),

79

Index 99


	Installation
	Requirements

	🚀 Quick Start
	Graph Representation
	Tensor Representation
	Logic Representation

	Model Definition
	Evaluating Model
	Evaluators


	PyNeuraLogic Language
	Relations
	Predicate name
	Terms
	Weights
	Named Weights

	Modifiers

	Rules
	Metadata


	Problem Definition
	Dataset
	Examples
	Queries

	Template
	Interpretation of Rules


	Understanding Rules
	An Entry Template
	Multiple Body Relations
	Multiple Rules
	Graph Readout
	Activation and Aggregation functions

	Model Evaluation
	Model Building
	Saving and Loading Model
	Utilizing Evaluators
	Settings Instance
	Evaluator Training/Testing Interface


	🦓 Module Zoo
	Pre-defined Modules
	GNN Modules
	General Block Modules
	Meta Modules

	Advanced Usage
	Heterogeneous Graphs
	Utilizing Inference Engine
	London Underground Example
	Finding Path Recursively
	Changing the Knowledge Base


	Fuzzy Relational Inference Engine
	Finding the Shortest Path
	Evaluating Queries


	Modifiers
	Hidden Modifier
	Special Modifier

	Visualization
	Visualization of the XOR Example
	Model Rendering
	Samples Rendering
	Getting the DOT Source


	Recursive XOR Generalization
	Java Settings, Logging and Debugging
	JVM Settings
	Java Logging
	Java Debugging


	🔬 Examples
	⏱️ Benchmarks
	Hypergraph Neural Networks
	Representation of hyperedges
	Propagation on hyperedges

	Heterophily Settings
	1. The Central Node Embedding Separation
	2. Higher-Order Neighborhoods Embedding
	3. Combination of Intermediate Representations

	neuralogic package
	Subpackages
	neuralogic.core package
	Subpackages
	neuralogic.core.builder package
	Submodules
	neuralogic.core.builder.builder module
	neuralogic.core.builder.components module
	neuralogic.core.builder.dataset_builder module
	Module contents

	neuralogic.core.constructs package
	Submodules
	neuralogic.core.constructs.factories module
	neuralogic.core.constructs.java_objects module
	neuralogic.core.constructs.metadata module
	neuralogic.core.constructs.predicate module
	neuralogic.core.constructs.rule module
	Module contents

	neuralogic.core.settings package
	Submodules
	neuralogic.core.settings.settings_proxy module
	Module contents


	Submodules
	neuralogic.core.enums module
	neuralogic.core.sources module
	neuralogic.core.template module
	Module contents

	neuralogic.dataset package
	neuralogic.nn package
	Subpackages
	neuralogic.nn.evaluator package
	Submodules
	neuralogic.nn.evaluator.dynet module
	neuralogic.nn.evaluator.java module
	neuralogic.nn.evaluator.torch module
	Module contents


	Submodules
	neuralogic.nn.init module
	neuralogic.nn.base module
	neuralogic.nn.dynet module
	neuralogic.nn.java module
	neuralogic.nn.torch module
	Module contents

	neuralogic.utils package
	Subpackages
	neuralogic.utils.data package
	Module contents

	neuralogic.utils.visualize package
	Module contents


	Module contents


	Submodules
	neuralogic.logging module
	Module contents

	What is this good for?
	How is it different from other GNN frameworks?
	Supported backends
	Examples
	Papers
	Python Module Index
	Index

